We study the action of a differential operator on Schubert polynomials. Using this action, we first give a short new proof of an identity of I. Macdonald (1991). We then prove a determinant conjecture of R. Stanley (2017). This conjecture implies the (strong) Sperner property for the weak order on the symmetric group, a property recently established by C. Gaetz and Y. Gao (2019).
Revised:
Accepted:
Published online:
Keywords: Sperner property, weak order, Schubert polynomial, Macdonald identity
Hamaker, Zachary 1; Pechenik, Oliver 2; Speyer, David E 2; Weigandt, Anna 2
@article{ALCO_2020__3_2_301_0, author = {Hamaker, Zachary and Pechenik, Oliver and Speyer, David E and Weigandt, Anna}, title = {Derivatives of {Schubert} polynomials and proof of a determinant conjecture of {Stanley}}, journal = {Algebraic Combinatorics}, pages = {301--307}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.93}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.93/} }
TY - JOUR AU - Hamaker, Zachary AU - Pechenik, Oliver AU - Speyer, David E AU - Weigandt, Anna TI - Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley JO - Algebraic Combinatorics PY - 2020 SP - 301 EP - 307 VL - 3 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.93/ DO - 10.5802/alco.93 LA - en ID - ALCO_2020__3_2_301_0 ER -
%0 Journal Article %A Hamaker, Zachary %A Pechenik, Oliver %A Speyer, David E %A Weigandt, Anna %T Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley %J Algebraic Combinatorics %D 2020 %P 301-307 %V 3 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.93/ %R 10.5802/alco.93 %G en %F ALCO_2020__3_2_301_0
Hamaker, Zachary; Pechenik, Oliver; Speyer, David E; Weigandt, Anna. Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 301-307. doi : 10.5802/alco.93. https://alco.centre-mersenne.org/articles/10.5802/alco.93/
[1] RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[2] A bijective proof of Macdonald’s reduced word formula, Algebraic Combin., Volume 2 (2019) no. 2, pp. 217-248 | DOI | MR | Zbl
[3] Schubert polynomials and the nil-Coxeter algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | DOI | MR | Zbl
[4] A combinatorial duality between the weak and strong Bruhat orders (2018), 14 pages (https://arxiv.org/abs/1812.05126) | Zbl
[5] A combinatorial -action and the Sperner property for the weak order (2019) (Proc. Amer. Math. Soc., to appear, https://arxiv.org/abs/1811.05501) | Zbl
[6] Notes on Schubert polynomials, 6, Publications du LACIM, Université du Québec à Montréal, 1991
[7] Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001, viii+167 pages (Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3) | MR | Zbl
[8] Product evaluations of Lefschetz determinants for Grassmannians and of determinants of multinomial coefficients, J. Comb. Theory, Ser. A, Volume 54 (1990) no. 2, pp. 235-247 | DOI | MR | Zbl
[9] Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, Volume 1 (1980) no. 2, pp. 168-184 | DOI | MR | Zbl
[10] Some Schubert shenanigans (2017), 8 pages (https://arxiv.org/abs/1704.00851)
Cited by Sources: