We consider Lusztig’s -function on Coxeter groups (in the equal parameter case) and classify all Coxeter groups with finitely many elements of -value 2 in terms of Coxeter diagrams.
Revised:
Accepted:
Published online:
Keywords: Coxeter groups, Hecke algebras, Lusztig’s $\mathbf{a}$-function, fully commutative elements, heaps, star operations
Green, R. M. 1; Xu, Tianyuan 2
@article{ALCO_2020__3_2_331_0, author = {Green, R. M. and Xu, Tianyuan}, title = {Classification of {Coxeter} groups with finitely many elements of <strong>a</strong>-value 2}, journal = {Algebraic Combinatorics}, pages = {331--364}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.95}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.95/} }
TY - JOUR AU - Green, R. M. AU - Xu, Tianyuan TI - Classification of Coxeter groups with finitely many elements of a-value 2 JO - Algebraic Combinatorics PY - 2020 SP - 331 EP - 364 VL - 3 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.95/ DO - 10.5802/alco.95 LA - en ID - ALCO_2020__3_2_331_0 ER -
%0 Journal Article %A Green, R. M. %A Xu, Tianyuan %T Classification of Coxeter groups with finitely many elements of a-value 2 %J Algebraic Combinatorics %D 2020 %P 331-364 %V 3 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.95/ %R 10.5802/alco.95 %G en %F ALCO_2020__3_2_331_0
Green, R. M.; Xu, Tianyuan. Classification of Coxeter groups with finitely many elements of a-value 2. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 331-364. doi : 10.5802/alco.95. https://alco.centre-mersenne.org/articles/10.5802/alco.95/
[1] On tensor categories attached to cells in affine Weyl groups, Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.), Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 69-90 | MR | Zbl
[2] On tensor categories attached to cells in affine Weyl groups. III, Isr. J. Math., Volume 170 (2009), pp. 207-234 | DOI | MR | Zbl
[3] On tensor categories attached to cells in affine Weyl groups. II, Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.), Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 101-119 | DOI | MR | Zbl
[4] Fully commutative elements in finite and affine Coxeter groups, Monatsh. Math., Volume 178 (2015) no. 1, pp. 1-37 | DOI | MR | Zbl
[5] Embedded factor patterns for Deodhar elements in Kazhdan–Lusztig theory, Ann. Comb., Volume 11 (2007) no. 3-4, pp. 285-333 | DOI | MR | Zbl
[6] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR | Zbl
[7] The Hodge theory of Soergel bimodules, Ann. Math. (2), Volume 180 (2014) no. 3, pp. 1089-1136 | DOI | MR | Zbl
[8] Diagram calculus for a type affine Temperley-Lieb algebra, II, J. Pure Appl. Algebra, Volume 222 (2018) no. 12, pp. 3795-3830 | DOI | MR | Zbl
[9] Tensor categories, Mathematical Surveys and Monographs, 205, American Mathematical Society, Providence, RI, 2015, xvi+343 pages | MR | Zbl
[10] A Hecke algebra quotient and some combinatorial applications, J. Algebr. Comb., Volume 5 (1996) no. 3, pp. 175-189 | DOI | MR | Zbl
[11] Hecke algebras of finite type are cellular, Invent. Math., Volume 169 (2007) no. 3, pp. 501-517 | DOI | MR | Zbl
[12] Lusztig’s -function in type in the asymptotic case, Nagoya Math. J., Volume 182 (2006), pp. 199-240 | DOI | MR | Zbl
[13] On rank functions for heaps, J. Comb. Theory, Ser. A, Volume 102 (2003) no. 2, pp. 411-424 | DOI | MR | Zbl
[14] Star reducible Coxeter groups, Glasg. Math. J., Volume 48 (2006) no. 3, pp. 583-609 | DOI | MR | Zbl
[15] Generalized Jones traces and Kazhdan–Lusztig bases, J. Pure Appl. Algebra, Volume 211 (2007) no. 3, pp. 744-772 | DOI | MR | Zbl
[16] Fully commutative Kazhdan–Lusztig cells, Ann. Inst. Fourier, Volume 51 (2001) no. 4, pp. 1025-1045 | DOI | Numdam | MR | Zbl
[17] How many elements of a Coxeter group have a unique reduced expression?, J. Group Theory, Volume 20 (2017) no. 5, pp. 903-910 | DOI | MR | Zbl
[18] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | DOI | MR | Zbl
[19] Some examples of square integrable representations of semisimple -adic groups, Trans. Am. Math. Soc., Volume 277 (1983) no. 2, pp. 623-653 | DOI | MR | Zbl
[20] Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Adv. Stud. Pure Math.), Volume 6, North-Holland, Amsterdam, 1985, pp. 255-287 | DOI | MR | Zbl
[21] Cells in affine Weyl groups. II, J. Algebra, Volume 109 (1987) no. 2, pp. 536-548 | DOI | MR | Zbl
[22] Hecke algebras with unequal parameters, 2014 (https://arxiv.org/abs/math/0208154) | Zbl
[23] Fully commutative elements in the Weyl and affine Weyl groups, J. Algebra, Volume 284 (2005) no. 1, pp. 13-36 | DOI | MR | Zbl
[24] On the fully commutative elements of Coxeter groups, J. Algebr. Comb., Volume 5 (1996) no. 4, pp. 353-385 | DOI | MR | Zbl
[25] The enumeration of fully commutative elements of Coxeter groups, J. Algebr. Comb., Volume 7 (1998) no. 3, pp. 291-320 | DOI | MR | Zbl
[26] Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, Academic Press, London, 1969, pp. 175-185 | MR | Zbl
[27] Equivalence classes for the -coefficient of Kazhdan–Lusztig polynomials in , Exp. Math., Volume 20 (2011) no. 4, pp. 457-466 | DOI | MR | Zbl
[28] On the Subregular -Rings of Coxeter Systems, Algebr. Represent. Theory (2018), pp. 1-34 | DOI | MR | Zbl
Cited by Sources: