This paper defines the partition algebra, denoted by , for complex reflection group acting on tensor product , where is the reflection representation of . A basis of the centralizer algebra of this action of was given by Tanabe and for , the corresponding partition algebra was studied by Orellana. We also define a subalgebra such that and establish this subalgebra as partition algebra of a subgroup of acting on . We call the algebras and Tanabe algebras. The aim of this paper is to study representation theory of Tanabe algebras: parametrization of their irreducible modules, and construction of Bratteli diagram for the tower of Tanabe algebras
We conclude the paper by giving Jucys–Murphy elements of Tanabe algebras and their actions on the Gelfand–Tsetlin basis, determined by this multiplicity free tower, of irreducible modules.
Revised:
Accepted:
Published online:
Keywords: Complex reflection groups, Tanabe algebras, Schur–Weyl duality, Jucys–Murphy elements
Mishra, Ashish 1; Srivastava, Shraddha 2
@article{ALCO_2020__3_2_389_0, author = {Mishra, Ashish and Srivastava, Shraddha}, title = {On representation theory of partition algebras for complex reflection groups}, journal = {Algebraic Combinatorics}, pages = {389--432}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.97}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.97/} }
TY - JOUR AU - Mishra, Ashish AU - Srivastava, Shraddha TI - On representation theory of partition algebras for complex reflection groups JO - Algebraic Combinatorics PY - 2020 SP - 389 EP - 432 VL - 3 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.97/ DO - 10.5802/alco.97 LA - en ID - ALCO_2020__3_2_389_0 ER -
%0 Journal Article %A Mishra, Ashish %A Srivastava, Shraddha %T On representation theory of partition algebras for complex reflection groups %J Algebraic Combinatorics %D 2020 %P 389-432 %V 3 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.97/ %R 10.5802/alco.97 %G en %F ALCO_2020__3_2_389_0
Mishra, Ashish; Srivastava, Shraddha. On representation theory of partition algebras for complex reflection groups. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 389-432. doi : 10.5802/alco.97. https://alco.centre-mersenne.org/articles/10.5802/alco.97/
[1] Colored-descent representations of complex reflection groups , Israel J. Math., Volume 160 (2007), pp. 317-347 | DOI | MR | Zbl
[2] Partition algebras with and the fundamental theorems of invariant theory for the symmetric group , J. Lond. Math. Soc. (2), Volume 99 (2019) no. 1, pp. 194-224 | DOI | MR | Zbl
[3] Partition algebras and permutation representations of wreath products, Ph. D. Thesis, University of Wisconsin – Madison (USA) (2002) (http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3049298)
[4] Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4), Volume 9 (1976) no. 3, pp. 379-436 | DOI | Numdam | MR | Zbl
[5] A seminormal form for partition algebras, J. Combin. Theory Ser. A, Volume 120 (2013) no. 7, pp. 1737-1785 | DOI | MR | Zbl
[6] Polynomial representations of , Lecture Notes in Mathematics, 830, Springer, Berlin, 2007, x+161 pages (With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker) | MR
[7] Murnaghan–Nakayama rules for characters of Iwahori–Hecke algebras of the complex reflection groups , Canad. J. Math., Volume 50 (1998) no. 1, pp. 167-192 | DOI | MR | Zbl
[8] Partition algebras, European J. Combin., Volume 26 (2005) no. 6, pp. 869-921 | DOI | MR | Zbl
[9] The Potts model and the symmetric group, Subfactors (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 259-267 | MR | Zbl
[10] Temperley–Lieb algebras for nonplanar statistical mechanics – the partition algebra construction, J. Knot Theory Ramifications, Volume 3 (1994) no. 1, pp. 51-82 | DOI | MR | Zbl
[11] The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A, Volume 33 (2000) no. 19, pp. 3669-3695 | DOI | MR | Zbl
[12] The Potts model representation and a Robinson–Schensted correspondence for the partition algebra, Compositio Math., Volume 112 (1998) no. 2, pp. 237-254 | DOI | MR | Zbl
[13] On an algebraic approach to higher-dimensional statistical mechanics, Comm. Math. Phys., Volume 158 (1993) no. 1, pp. 155-190 | DOI | MR | Zbl
[14] Algebras in higher-dimensional statistical mechanics – the exceptional partition (mean field) algebras, Lett. Math. Phys., Volume 30 (1994) no. 3, pp. 179-185 | DOI | MR | Zbl
[15] A -ring Frobenius characteristic for , Electron. J. Combin., Volume 11 (2004) no. 1, Paper no. paper number 56, 33 pages | MR | Zbl
[16] The Okounkov–Vershik approach to the representation theory of , J. Algebraic Combin., Volume 44 (2016) no. 3, pp. 519-560 | DOI | MR | Zbl
[17] Higher Specht polynomials for the complex reflection group , Hokkaido Math. J., Volume 27 (1998) no. 3, pp. 505-515 | DOI | MR
[18] A new approach to representation theory of symmetric groups, Selecta Math. (N.S.), Volume 2 (1996) no. 4, pp. 581-605 | DOI | MR | Zbl
[19] On partition algebras for complex reflection groups, J. Algebra, Volume 313 (2007) no. 2, pp. 590-616 | DOI | MR | Zbl
[20] On the theory of representations of the wreath products of finite groups and symmetric groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 240 (1997) no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2, p. 229-244, 294–295 translation in J. Math. Sci. (New York) 96 (1999), no. 5, 3590–3599 | DOI | MR | Zbl
[21] Notes (http://soimeme.org/~arunram/notes.html)
[22] Notes titled Murphy elements (2010) http://soimeme.org/~arunram/Notes/murphyelementsContent.xhtml (accessed 16th April 2018)
[23] Notes titled Schur–Weyl dualities (2010) http://soimeme.org/~arunram/Notes/schurweyldualitiesContent.xhtml (accessed 28th December 2017)
[24] On the finite imprimitive unitary reflection groups, J. Algebra, Volume 45 (1977) no. 2, pp. 439-452 | DOI | MR | Zbl
[25] Finite unitary reflection groups, Canadian J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl
[26] On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math., Volume 140 (1989) no. 2, pp. 353-396 | DOI | MR | Zbl
[27] On the centralizer algebra of the unitary reflection group , Nagoya Math. J., Volume 148 (1997), pp. 113-126 | DOI | MR | Zbl
[28] A new approach to representation theory of symmetric groups. II, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 307 (2004) no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, p. 57-98, 281 translation in J. Math. Sci. (N. Y.) 131 (2005), no. 2, 5471–5494 | DOI | MR
[29] Condition that the irreducible representations of a group, considered as representations of a subgroup, do not contain any representation of the subgroup more than once, The collected works of Eugene Paul Wigner. Part A. The scientific papers. Vol. I, Springer-Verlag, Berlin, 1993 Published in: Spectroscopic and Group Theoretic Methods in Physics, (F. Bloch et al., eds.). North-Holland, Amsterdam 1968, pp.131–136 | MR
Cited by Sources: