We revisit the definition of the Heisenberg category of central charge . For central charge , this category was introduced originally by Khovanov, but with some additional cyclicity relations which we show here are unnecessary. For other negative central charges, the definition is due to Mackaay and Savage, also with some redundant relations, while central charge zero recovers the affine oriented Brauer category of Brundan, Comes, Nash and Reynolds. We also discuss cyclotomic quotients.
Revised: 2018-05-22
Accepted: 2018-06-12
Published online: 2018-09-10
DOI: https://doi.org/10.5802/alco.26
Classification: 17B10, 18D10
Keywords: Heisenberg category, string calculus
@article{ALCO_2018__1_4_523_0, author = {Brundan, Jonathan}, title = {On the definition of Heisenberg category}, journal = {Algebraic Combinatorics}, pages = {523--544}, publisher = {MathOA foundation}, volume = {1}, number = {4}, year = {2018}, doi = {10.5802/alco.26}, mrnumber = {3875075}, zbl = {06963903}, language = {en}, url = {https://alco.centre-mersenne.org/item/ALCO_2018__1_4_523_0/} }
Brundan, Jonathan. On the definition of Heisenberg category. Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 523-544. doi : 10.5802/alco.26. https://alco.centre-mersenne.org/item/ALCO_2018__1_4_523_0/
[1] On the decomposition numbers of the Hecke algebra of , J. Math. Kyoto Univ., Volume 36 (1996) no. 4, pp. 789-808 | Article | MR 1443748 | Zbl 0888.20011
[2] On the definition of Kac-Moody 2-category, Math. Ann., Volume 364 (2016) no. 1-2, pp. 353-372 | Article | MR 3451390 | Zbl 06540658
[3] Representations of oriented skein categories (2017) (https://arxiv.org/abs/1712.08953 )
[4] A basis theorem for the affine oriented Brauer category and its cyclotomic quotients, Quantum Topol., Volume 8 (2017) no. 1, pp. 75-112 | Article | MR 3630282 | Zbl 06718140
[5] Categorical actions and crystals, Categorification and higher representation theory (Contemporary Mathematics) Volume 684, American Mathematical Society, 2017, pp. 116-159
[6] Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., Volume 222 (2009) no. 6, pp. 1883-1942 | Article | MR 2562768 | Zbl 1241.20003
[7] On the definition of quantum Heisenberg category (in preparation)
[8] The elliptic Hall algebra and the deformed Khovanov Heisenberg category (2016) (https://arxiv.org/abs/1609.03506 ) | Zbl 06976959
[9] -algebras from Heisenberg categories, J. Inst. Math. Jussieu (2016), pp. 1-37 | Article | Zbl 06963839
[10] Heisenberg categorification and Hilbert schemes, Duke Math. J., Volume 161 (2012) no. 13, pp. 2469-2547 | Article | MR 2988902 | Zbl 1263.14020
[11] Higher level twisted Heisenberg supercategories (in preparation)
[12] A categorification of twisted Heisenberg algebras, Adv. Math., Volume 295 (2016), pp. 368-420 | Article | MR 3488039 | Zbl 06570861
[13] Heisenberg algebra and a graphical calculus, Fundam. Math., Volume 225 (2014), pp. 169-210 | Article | MR 3205569 | Zbl 1304.18019
[14] A categorification of quantum , Quantum Topol., Volume 1 (2010) no. 1, pp. 1-92 | Article | MR 2628852 | Zbl 1206.17015
[15] Linear and projective representations of symmetric groups, Cambridge University Press, 2005, xiv+277 pages | MR 2165457 | Zbl 1080.20011
[16] Hecke algebras, finite general linear groups, and Heisenberg categorification, Quantum Topol., Volume 4 (2013) no. 2, pp. 125-185 | Article | MR 3032820 | Zbl 1279.20006
[17] Degenerate cyclotomic Hecke algebras and higher level Heisenberg categorification, J. Algebra, Volume 505 (2018), pp. 150-193 | Article | MR 3789909 | Zbl 06893263
[18] An equivalence between truncations of categorified quantum groups and Heisenberg categories, J. Éc. Polytech., Math., Volume 5 (2018), pp. 192-238 | MR 3738513 | Zbl 06988578
[19] A general approach to Heisenberg categorification via wreath product algebras, Math. Z., Volume 286 (2017) no. 1-2, pp. 603-655 | Article | MR 3648512 | Zbl 1366.18006
[20] 2-Kac-Moody algebras (2008) (https://arxiv.org/abs/0812.5023 )
[21] Quiver Hecke algebras and -Lie algebras, Algebra Colloq., Volume 19 (2012) no. 2, pp. 359-410 | Article | MR 2908731 | Zbl 1247.20002
[22] Affine walled Brauer algebras and super Schur-Weyl duality, Adv. Math., Volume 285 (2015), pp. 28-71 | Article | MR 3406495 | Zbl 1356.17012
[23] Frobenius Heisenberg categorification (2018) (https://arxiv.org/abs/1802.01626 )
[24] Canonical bases and higher representation theory, Compos. Math., Volume 151 (2015) no. 1, pp. 121-166 | Article | MR 3305310 | Zbl 06417584