Towards a function field version of Freiman’s Theorem
Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 501-521.

We discuss a multiplicative counterpart of Freiman’s 3k-4 theorem in the context of a function field F over an algebraically closed field K. Such a theorem would give a precise description of subspaces S, such that the space S 2 spanned by products of elements of S satisfies dimS 2 3dimS-4. We make a step in this direction by giving a complete characterisation of spaces S such that dimS 2 =2dimS. We show that, up to multiplication by a constant field element, such a space S is included in a function field of genus 0 or 1. In particular if the genus is 1 then this space is a Riemann–Roch space.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.19
Classification: 11R58, 11P99, 05E40, 14H05
Keywords: Additive combinatorics, function fields
Bachoc, Christine 1; Couvreur, Alain 2; Zémor, Gilles 1

1 Institut de Mathématiques de Bordeaux, CNRS UMR 5251, Université de Bordeaux, 351 cours de la Libération, 33400 Talence, France
2 INRIA & Laboratoire LIX, CNRS UMR 7161, École Polytechnique, Université Paris Saclay, 91128 Palaiseau Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2018__1_4_501_0,
     author = {Bachoc, Christine and Couvreur, Alain and Z\'emor, Gilles},
     title = {Towards a function field version of {Freiman{\textquoteright}s} {Theorem}},
     journal = {Algebraic Combinatorics},
     pages = {501--521},
     publisher = {MathOA foundation},
     volume = {1},
     number = {4},
     year = {2018},
     doi = {10.5802/alco.19},
     zbl = {06963902},
     mrnumber = {3875074},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.19/}
}
TY  - JOUR
AU  - Bachoc, Christine
AU  - Couvreur, Alain
AU  - Zémor, Gilles
TI  - Towards a function field version of Freiman’s Theorem
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 501
EP  - 521
VL  - 1
IS  - 4
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.19/
DO  - 10.5802/alco.19
LA  - en
ID  - ALCO_2018__1_4_501_0
ER  - 
%0 Journal Article
%A Bachoc, Christine
%A Couvreur, Alain
%A Zémor, Gilles
%T Towards a function field version of Freiman’s Theorem
%J Algebraic Combinatorics
%D 2018
%P 501-521
%V 1
%N 4
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.19/
%R 10.5802/alco.19
%G en
%F ALCO_2018__1_4_501_0
Bachoc, Christine; Couvreur, Alain; Zémor, Gilles. Towards a function field version of Freiman’s Theorem. Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 501-521. doi : 10.5802/alco.19. https://alco.centre-mersenne.org/articles/10.5802/alco.19/

[1] Bachoc, C.; Serra, C.; Zémor, G. An analogue of Vosper’s theorem for extension fields, Math. Proc. Philos. Soc., Volume 163 (2017), pp. 423-452 | DOI | MR | Zbl

[2] Bachoc, Christine; Serra, Oriol; Zémor, Gilles Revisiting Kneser’s theorem for field extensions, Combinatorica (2017) | DOI | Zbl

[3] Beck, V.; Lecouvey, C. Additive combinatorics methods in associative algebras (2015) (To appear in Confluentes Math. ArXiv:math/1504.02287) | Zbl

[4] Bourbaki, N. Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles, No, Hermann, Paris, 1964 | Zbl

[5] Eliahou, S.; Lecouvey, C. On linear versions of some addition theorems, Linear Multilinear Algebra, Volume 57 (2009), pp. 759-775 | DOI | MR | Zbl

[6] Freiman, G. A. Foundations of a structural theory of set addition, Transl. Math. Monogr., 37, Amer. Math. Soc., Providence, R. I., 1973, vii+108 pages | MR | Zbl

[7] Fulton, William Algebraic curves, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989, xxii+226 pages (An introduction to algebraic geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original) | MR | Zbl

[8] Hamidoune, Y. O.; Rødseth., Ø. An inverse theorem modulo p, Acta Arith., Volume 92 (2000), pp. 251-262 | DOI

[9] Hou, X.; Leung, K. H.; Xiang, Q. A generalization of an addition theorem of Kneser, J. Number Theory, Volume 97 (2002), pp. 1-9 | DOI | MR | Zbl

[10] Kneser, M. Summenmengen in Lokalkompakten Abelesche Gruppen, Math. Z., Volume 66 (1956), pp. 88-110 | DOI | Zbl

[11] Mirandola, Diego; Zémor, Gilles Critical pairs for the product singleton bound, IEEE Trans. Inform. Theory, Volume 61 (2015) no. 9, pp. 4928-4937 | DOI | MR | Zbl

[12] Mumford, David Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29-100 | Zbl

[13] Randriambololona, Hugues On products and powers of linear codes under componentwise multiplication, Algorithmic arithmetic, geometry, and coding theory (Contemp. Math.), Volume 637, Amer. Math. Soc., Providence, RI, 2015, pp. 3-78 | DOI | MR | Zbl

[14] Roth, R. M.; Raviv, N.; Tamo, I. Construction of Sidon spaces with applications to coding, IEEE Trans. Inform. Theory, Volume 64 (2018) no. 6, pp. 4412-4422 | DOI | MR | Zbl

[15] Silverman, Joseph H. The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, Dordrecht, 2009, xx+513 pages | MR | Zbl

[16] Stichtenoth, Henning Algebraic function fields and codes, Grad. Texts in Math., 254, Springer-Verlag, Berlin, 2009, xiv+355 pages | MR | Zbl

[17] Tao, Terence; Vu, Van Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages | DOI | MR | Zbl

[18] Vosper, G. The critical pairs of subsets of a group of prime order, J. London Math. Soc, Volume 31 (1956), pp. 200-205 | DOI | MR | Zbl

Cited by Sources: