The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions
Algebraic Combinatorics, Volume 2 (2019) no. 5, p. 735-751

Recently Tewari and van Willigenburg constructed modules of the 0-Hecke algebra that are mapped to the quasisymmetric Schur functions by the quasisymmetric characteristic. These modules have a natural decomposition into a direct sum of certain submodules. We show that the summands are indecomposable by determining their endomorphism rings.

Received : 2017-12-11
Revised : 2018-09-06
Accepted : 2019-01-05
Published online : 2019-10-08
DOI : https://doi.org/10.5802/alco.58
Classification:  05E05,  20C08,  05E10
Keywords: 0-Hecke algebra, composition tableau, quasisymmetric function, Schur function
@article{ALCO_2019__2_5_735_0,
     author = {K\"onig, Sebastian},
     title = {The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {2},
     number = {5},
     year = {2019},
     pages = {735-751},
     doi = {10.5802/alco.58},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2019__2_5_735_0}
}
The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions. Algebraic Combinatorics, Volume 2 (2019) no. 5, pp. 735-751. doi : 10.5802/alco.58. https://alco.centre-mersenne.org/item/ALCO_2019__2_5_735_0/

[1] Berg, C.; Bergeron, N.; Saliola, F.; Serrano, L.; Zabrocki, M. A lift of the Schur and Hall–Littlewood bases to non-commutative symmetric functions, Canad. J. Math., Volume 66 (2014), pp. 525-565 | Article | MR 3194160 | Zbl 1291.05206

[2] Berg, C.; Bergeron, N.; Saliola, F.; Serrano, L.; Zabrocki, M. Indecomposable modules for the dual immaculate basis of quasi-symmetric functions, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 991-1000 | MR 3293717 | Zbl 1306.05243

[3] Bessenrodt, C.; Luoto, K.; Van Willigenburg, S. Skew quasisymmetric Schur functions and noncommutative Schur functions, Adv. Math., Volume 226 (2011), pp. 4492-4532 | Article | MR 2770457 | Zbl 1214.05170

[4] Björner, A.; Brenti, F. Combinatorics of Coxeter groups, Springer Science & Business Media (2006) | Zbl 1110.05001

[5] Duchamp, G.; Krob, D.; Leclerc, B.; Thibon, J.-Y. Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q=0, C. R. Acad. Sci. Paris Sér. I Math., Volume 322 (1996), pp. 107-112

[6] Gessel, I. Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and Algebra (Boulder, Colo., 1983), Amer. Math. Soc., Providence, RI (Contemp. Math.) Volume 34 (1984), pp. 289-317 | Article | MR 777705 | Zbl 0562.05007

[7] Grinberg, D.; Reiner, V. Hopf algebras in combinatorics (2014) (https://arxiv.org/abs/1409.8356 )

[8] Haglund, J.; Luoto, K.; Mason, S.; Van Willigenburg, S. Quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011), pp. 463-490 | Article | MR 2739497 | Zbl 1229.05270

[9] Huang, J. A tableau approach to the representation theory of 0-Hecke algebras, Ann. Comb., Volume 20 (2016) no. 4, pp. 831-868 | Article | MR 3572389 | Zbl 1354.05140

[10] Krob, D.; Thibon, J.-Y. Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q=0, J. Algebraic Combin., Volume 6 (1997), pp. 339-376 | MR 1471894 | Zbl 0881.05120

[11] Mathas, A. Iwahori–Hecke algebras and Schur algebras of the symmetric group, American Mathematical Soc. Volume 15 (1999) | MR 1711316 | Zbl 0940.20018

[12] Norton, P. N. 0-Hecke algebras, J. Austral. Math. Soc. Ser. A, Volume 27 (1979) no. 3, pp. 337-357 | Article | MR 532754

[13] Stanley, R. Enumerative combinatorics. Vol. 2, Cambridge University Press, Cambridge (1999), xii+581 pages | Zbl 0928.05001

[14] Tewari, V.; Van Willigenburg, S. Modules of the 0-Hecke algebra and quasisymmetric Schur functions, Adv. Math., Volume 285 (2015), pp. 1025-1065 | Article | MR 3406520 | Zbl 1323.05132