The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture
Algebraic Combinatorics, Volume 2 (2019) no. 6, p. 1059-1108

We define a subclass of Hessenberg varieties called abelian Hessenberg varieties, inspired by the theory of abelian ideals in a Lie algebra developed by Kostant and Peterson. We give an inductive formula for the 𝔖 n -representation on the cohomology of an abelian regular semisimple Hessenberg variety with respect to the action defined by Tymoczko. Our result implies that a graded version of the Stanley–Stembridge conjecture holds in the abelian case, and generalizes results obtained by Shareshian–Wachs and Teff. Our proof uses previous work of Stanley, Gasharov, Shareshian–Wachs, and Brosnan–Chow, as well as results of the second author on the geometry and combinatorics of Hessenberg varieties. As part of our arguments, we obtain inductive formulas for the Poincaré polynomials of regular abelian Hessenberg varieties.

Received : 2018-07-30
Revised : 2019-03-02
Accepted : 2019-03-19
Published online : 2019-12-04
DOI : https://doi.org/10.5802/alco.76
Classification:  14M17,  05E05
Keywords: Stanley–Stembridge conjecture, symmetric functions, e-positivity, Hessenberg varieties, abelian ideal
@article{ALCO_2019__2_6_1059_0,
     author = {Harada, Megumi and Precup, Martha E.},
     title = {The cohomology of abelian Hessenberg varieties and the Stanley--Stembridge conjecture},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {2},
     number = {6},
     year = {2019},
     pages = {1059-1108},
     doi = {10.5802/alco.76},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2019__2_6_1059_0}
}
Harada, Megumi; Precup, Martha E. The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture. Algebraic Combinatorics, Volume 2 (2019) no. 6, pp. 1059-1108. doi : 10.5802/alco.76. https://alco.centre-mersenne.org/item/ALCO_2019__2_6_1059_0/

[1] Abe, Hiraku; Harada, Megumi; Horiguchi, Tatsuya; Masuda, Mikiya The cohomology rings of regular nilpotent Hessenberg Varieties in Lie type A, Int. Math. Res. Not., Volume 2019 (2019) no. 17, pp. 5316-5388 | Article | Zbl 06991443

[2] Abe, Hiraku; Horiguchi, Tatsuya; Masuda, Mikiya The cohomology rings of regular semisimple Hessenberg varieties for h=(h(1),n,,n), J. Comb., Volume 10 (2019) no. 1, pp. 27-59 | Article | MR 3890915 | Zbl 06991443

[3] Brosnan, Patrick; Chow, Timothy Y. Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math., Volume 329 (2018), pp. 955-1001 | Article | MR 3783432 | Zbl 1410.05222

[4] Ceccherini-Silberstein, Tullio; Scarabotti, Fabio; Tolli, Filippo Representation theory of the symmetric groups, Cambridge Studies in Advanced Mathematics, Volume 121, Cambridge University Press, Cambridge, 2010, xvi+412 pages | Article | MR 2643487 | Zbl 1230.20002

[5] Cho, Soojin; Huh, JiSun On e-positivity and e-unimodality of chromatic quasisymmetric functions (2017) (https://arxiv.org/abs/1711.07152) | Zbl 1411.05267

[6] De Mari, Filippo; Procesi, Claudio; Shayman, Mark. A. Hessenberg varieties, Trans. Amer. Math. Soc., Volume 332 (1992) no. 2, pp. 529-534 | Article | MR MR1043857 (92j:14060) | Zbl 0770.14022

[7] De Mari Casareto Dal Verme, Filippo On the topology of the Hessenberg varieties of a matrix (1987) (Ph. D. Thesis) | MR 2636295

[8] Fulton, William Young tableaux, London Mathematical Society Student Texts, Volume 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR MR1464693 (99f:05119) | Zbl 0878.14034

[9] Gasharov, Vesselin Incomparability graphs of (3+1)-free posets are s-positive, Discrete Math., Volume 157 (1996) no. 1-3, pp. 193-197 | Article | MR 1417294 | Zbl 0856.05042

[10] Gebhard, David D.; Sagan, Bruce E. A chromatic symmetric function in noncommuting variables, J. Algebraic Combin., Volume 13 (2001) no. 3, pp. 227-255 | Article | MR 1836903 | Zbl 0979.05105

[11] Guay-Paquet, Mathieu A modular relation for the chromatic symmetric functions of (3+1)-free posets (2013) (https://arxiv.org/abs/1306.2400)

[12] Guay-Paquet, Mathieu A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra (2016) (https://arxiv.org/abs/1601.05498)

[13] Haglund, James The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, Volume 41, American Mathematical Society, Providence, RI, 2008, viii+167 pages | MR 2371044 | Zbl 1142.05074

[14] Humphreys, James E. Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1972, xii+169 pages | Article | MR 0323842 (48 #2197) | Zbl 0254.17004

[15] Kostant, Bertram Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2), Volume 74 (1961), pp. 329-387 | Article | MR MR0142696 (26 #265) | Zbl 0134.03501

[16] Kostant, Bertram The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Int. Math. Res. Not., Volume 1998 (1998) no. 5, pp. 225-252 | Article | MR 1616913 | Zbl 0896.17002

[17] Mbirika, Aba; Tymoczko, Julianna Generalizing Tanisaki’s ideal via ideals of truncated symmetric functions, J. Algebraic Combin., Volume 37 (2013) no. 1, pp. 167-199 | Article | MR 3016306 | Zbl 1263.14050

[18] Precup, Martha Affine pavings of Hessenberg varieties for semisimple groups, Selecta Math. (N.S.), Volume 19 (2013) no. 4, pp. 903-922 | Article | MR 3131491 | Zbl 1292.14032

[19] Precup, Martha The connectedness of Hessenberg varieties, J. Algebra, Volume 437 (2015), pp. 34-43 | Article | MR 3351955 | Zbl 1386.14176

[20] Precup, Martha The Betti numbers of regular Hessenberg varieties are palindromic, Transform. Groups, Volume 23 (2018) no. 2, pp. 491-499 | Article | MR 3805214 | Zbl 06910188

[21] Rahman, Md. Saidur Basic graph theory, Undergraduate Topics in Computer Science, Springer, Cham, 2017, x+169 pages | Article | MR 3586021 | Zbl 1371.05002

[22] Shareshian, John; Wachs, Michelle L. Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | Article | MR 3488041 | Zbl 1334.05177

[23] Sommers, Eric; Tymoczko, Julianna Exponents for B-stable ideals, Trans. Amer. Math. Soc., Volume 358 (2006) no. 8, p. 3493-3509 (electronic) | Article | MR MR2218986 | Zbl 1105.20036

[24] Stanley, Richard P. (http://front.math.ucdavis.edu/math.SG/0211231, personal communication) | Numdam

[25] Stanley, Richard P. A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | Article | MR 1317387 | Zbl 0831.05027

[26] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, Volume 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | Article | MR 1676282 | Zbl 0928.05001

[27] Stanley, Richard P.; Stembridge, John R. On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | Article | MR 1207737 | Zbl 0772.05097

[28] Teff, Nicholas James The Hessenberg representation (2013) (Ph. D. Thesis) | MR 3192867 | Zbl 1303.14064

[29] Tymoczko, Julianna S. Linear conditions imposed on flag varieties, Amer. J. Math., Volume 128 (2006) no. 6, pp. 1587-1604 | Article | MR MR2275912 (2007h:14070) | Zbl 1106.14038

[30] Tymoczko, Julianna S. Permutation actions on equivariant cohomology of flag varieties, Toric topology (Contemp. Math.) Volume 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365-384 | Article | MR MR2428368 (2010i:14090) | Zbl 1147.14024