We study the algebraic combinatorics of monomial degenerations of Plücker forms which is governed by matching fields in the sense of Sturmfels and Zelevinsky. We provide a necessary condition for a matching field to yield a SAGBI basis of the Plücker algebra for -planes in -space. When the ideal associated to the matching field is quadratically generated this condition is both necessary and sufficient. Finally, we describe a family of matching fields, called -block diagonal, whose ideals are quadratically generated. These matching fields produce a new family of toric degenerations of .
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.77
Mots-clés : toric degenerations, SAGBI and Khovanskii bases, Grassmannians, tropical geometry
Mohammadi, Fatemeh 1; Shaw, Kristin 2
@article{ALCO_2019__2_6_1109_0, author = {Mohammadi, Fatemeh and Shaw, Kristin}, title = {Toric degenerations of {Grassmannians} from matching fields}, journal = {Algebraic Combinatorics}, pages = {1109--1124}, publisher = {MathOA foundation}, volume = {2}, number = {6}, year = {2019}, doi = {10.5802/alco.77}, zbl = {07140426}, mrnumber = {4049839}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.77/} }
TY - JOUR AU - Mohammadi, Fatemeh AU - Shaw, Kristin TI - Toric degenerations of Grassmannians from matching fields JO - Algebraic Combinatorics PY - 2019 SP - 1109 EP - 1124 VL - 2 IS - 6 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.77/ DO - 10.5802/alco.77 LA - en ID - ALCO_2019__2_6_1109_0 ER -
%0 Journal Article %A Mohammadi, Fatemeh %A Shaw, Kristin %T Toric degenerations of Grassmannians from matching fields %J Algebraic Combinatorics %D 2019 %P 1109-1124 %V 2 %N 6 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.77/ %R 10.5802/alco.77 %G en %F ALCO_2019__2_6_1109_0
Mohammadi, Fatemeh; Shaw, Kristin. Toric degenerations of Grassmannians from matching fields. Algebraic Combinatorics, Volume 2 (2019) no. 6, pp. 1109-1124. doi : 10.5802/alco.77. https://alco.centre-mersenne.org/articles/10.5802/alco.77/
[1] On the f-vectors of Gelfand-Tsetlin polytopes, Eur. J. Comb., Volume 67 (2018), pp. 61-77 | Zbl
[2] Combinatorics of maximal minors, J. Algebr. Comb., Volume 2 (1993) no. 2, pp. 111-121 | DOI | MR | Zbl
[3] Oriented Matroids, Cambridge University Press, 1999 | Zbl
[4] Toric degenerations of Gr and Gr via plabic Graphs, Ann. Comb., Volume 22 (2018) no. 3, pp. 491-512 | DOI | MR | Zbl
[5] Computing toric degenerations of flag varieties, Combinatorial Algebraic Geometry, Springer-Verlag New York, 2017, pp. 247-281 | DOI | Zbl
[6] Sagbi bases with applications to blow-up algebras, J. Reine Angew. Math., Volume 474 (1996), pp. 113-138 | MR | Zbl
[7] Tropical convexity, Doc. Math., Volume 9 (2004), pp. 1-27 | MR | Zbl
[8] Cellular resolutions from mapping cones, J. Comb. Theory, Ser. A, Volume 128 (2014), pp. 180-206 | DOI | MR | Zbl
[9] degeneration of flag varieties, Sel. Math., New Ser., Volume 18 (2012) no. 3, pp. 513-537 | DOI | MR | Zbl
[10] Stiefel tropical linear spaces, J. Comb. Theory, Ser. A, Volume 135 (2015), pp. 291-331 | DOI | MR | Zbl
[11] How to draw tropical planes, Electron. J. Comb., Volume 16 (2009) no. 2, Paper no. R6, 26 pages | MR | Zbl
[12] Distributive lattices, bipartite graphs and Alexander duality, J. Algebr. Comb., Volume 22 (2005) no. 3, pp. 289-302 | DOI | MR | Zbl
[13] Every affine graded ring has a Hodge algebra structure, Rend. Semin. Mat., Univ. Politec. Torino, Volume 44 (1986) no. 2, pp. 277-286 | MR | Zbl
[14] Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws, Commutative Algebra and Combinatorics (Adv. Stud. Pure Math.), Volume 11 (1987), pp. 93-109 | DOI | MR | Zbl
[15] The symplectic geometry of polygons in Euclidean space, J. Differ. Geom., Volume 44 (1996) no. 3, pp. 479-513 | DOI | MR | Zbl
[16] Khovanskii bases, higher rank valuations and tropical geometry (2016) (arXiv preprint https://arxiv.org/abs/1610.00298) | Zbl
[17] Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes, Adv. Math., Volume 193 (2005) no. 1, pp. 1-17 | DOI | MR | Zbl
[18] On the toric ideal of a matroid, Adv. Math., Volume 259 (2014), pp. 1-12 | DOI | MR | Zbl
[19] Introduction to tropical geometry, Grad. Stud. Math., 161, American Mathematical Society, Providence, RI, 2015, xii+363 pages | MR | Zbl
[20] Combinatorial commutative algebra, Grad. Texts Math., 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR | Zbl
[21] Toric degenerations of Gelfand–Cetlin systems and potential functions, Adv. Math., Volume 224 (2010) no. 2, pp. 648-706 | DOI | MR | Zbl
[22] Toric ideals generated by quadratic binomials, J. Algebra, Volume 218 (1999) no. 2, pp. 509-527 | DOI | MR | Zbl
[23] Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians (2017) (arXiv preprint https://arxiv.org/abs/1712.00447)
[24] Subalgebra bases, Commutative Algebra (Lect. Notes Math.), Volume 1430, Springer, Berlin, Heidelberg, 1990, pp. 61-87 | DOI | MR | Zbl
[25] The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | MR | Zbl
[26] Gröbner bases and convex polytopes, Univ. Lect. Ser., 8, American Mathematical Society, 1996 | Zbl
[27] Maximal minors and their leading terms, Adv. Math., Volume 98 (1993) no. 1, pp. 65-112 | DOI | MR | Zbl
[28] A unique exchange property for bases, Linear Algebra Appl., Volume 31 (1980), pp. 81-91 | DOI | MR | Zbl
[29] The degeneration of the Grassmannian into a toric variety and the calculation of the eigenspaces of a torus action, J. Algebr. Stat., Volume 6 (2015) no. 1, pp. 62-79 | MR | Zbl
Cited by Sources: