Cylindric symmetric functions and positivity
Algebraic Combinatorics, Volume 3 (2020) no. 1, p. 191-247

We introduce new families of cylindric symmetric functions as subcoalgebras in the ring of symmetric functions Λ (viewed as a Hopf algebra) which have non-negative structure constants. Combinatorially these cylindric symmetric functions are defined as weighted sums over cylindric reverse plane partitions or - alternatively - in terms of sets of affine permutations. We relate their combinatorial definition to an algebraic construction in terms of the principal Heisenberg subalgebra of the affine Lie algebra 𝔰𝔩 ^ n and a specialised cyclotomic Hecke algebra. Using Schur–Weyl duality we show that the new cylindric symmetric functions arise as matrix elements of Lie algebra elements in the subspace of symmetric tensors of a particular level-0 module which can be identified with the small quantum cohomology ring of the k-fold product of projective space. The analogous construction in the subspace of alternating tensors gives the known set of cylindric Schur functions which are related to the small quantum cohomology ring of Grassmannians. We prove that cylindric Schur functions form a subcoalgebra in Λ whose structure constants are the 3-point genus 0 Gromov–Witten invariants. We show that the new families of cylindric functions obtained from the subspace of symmetric tensors also share the structure constants of a symmetric Frobenius algebra, which we define in terms of tensor multiplicities of the generalised symmetric group G(n,1,k).

Received : 2018-05-01
Revised : 2019-07-03
Accepted : 2019-07-03
Published online : 2020-02-12
DOI : https://doi.org/10.5802/alco.90
Classification:  05E05,  05E10,  14N35,  53D45
Keywords: Cylindric reverse plane partitions, symmetric functions, 2D TQFT, Gromov–Witten invariants
@article{ALCO_2020__3_1_191_0,
     author = {Korff, Christian and Palazzo, David},
     title = {Cylindric symmetric functions and positivity},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {3},
     number = {1},
     year = {2020},
     pages = {191-247},
     doi = {10.5802/alco.90},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2020__3_1_191_0}
}
Korff, Christian; Palazzo, David. Cylindric symmetric functions and positivity. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 191-247. doi : 10.5802/alco.90. alco.centre-mersenne.org/item/ALCO_2020__3_1_191_0/

[1] Abrams, Lowell The quantum Euler class and the quantum cohomology of the Grassmannians, Isr. J. Math., Volume 117 (2000) no. 1, pp. 335-352 | Article | MR 1760598 | Zbl 0954.53048

[2] Agnihotri, Sharad Quantum cohomology and the Verlinde algebra (1995) (Ph. D. Thesis)

[3] Ariki, Susumu On the decomposition numbers of the Hecke algebra of G(m,1,n), J. Math. Kyoto Univ., Volume 36 (1996) no. 4, pp. 789-808 | Article | MR 1443748 | Zbl 0888.20011

[4] Ariki, Susumu; Koike, Kazuhiko A Hecke algebra of (Z/rZ)≀S n and construction of its irreducible representations, Adv. Math, Volume 106 (1994) no. 2, pp. 216-243 | Article | Zbl 0840.20007

[5] Atiyah, Michael F. Topological quantum field theories, Math. Publ. IHES, Volume 68 (1988), pp. 175-186 | Article | Zbl 0692.53053

[6] Beauville, Arnaud Conformal Blocks, Fusion Rules, and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Israel Math. Conf. Proc.) Volume 9 (1996), pp. 75-96 | MR 1360497 | Zbl 0848.17024

[7] Bertram, Aaron Quantum Schubert calculus, Adv. Math, Volume 128 (1997) no. 2, pp. 289-305 | Article | MR 1454400 | Zbl 0945.14031

[8] Bertram, Aaron; Ciocan-Fontanine, IonuĹŁ; Fulton, William Quantum multiplication of Schur polynomials, J. Algebra, Volume 219 (1999) no. 2, pp. 728-746 | Article | MR 1706853 | Zbl 0936.05086

[9] Bertram, Aaron; Ciocan-Fontanine, IonuĹŁ; Kim, Bumsig Two proofs of a conjecture of Hori and Vafa, Duke Math. J., Volume 126 (2005) no. 1, pp. 101-136 | Article | MR 2110629 | Zbl 1082.14055

[10] Björner, Anders; Brenti, Francesco Affine permutations of type A, Electron. J. Combin, Volume 3 (1996) no. 2, R18, 35 pages | MR 1392503 | Zbl 0854.05002

[11] Butler, Lynne M.; Hales, Alfred W. Nonnegative Hall polynomials, J. Algebr. Comb., Volume 2 (1993) no. 2, pp. 125-135 | Article | MR 1229429 | Zbl 0788.05089

[12] Eriksson, Henrik; Eriksson, Kimmo Affine Weyl groups as infinite permutations, Electron. J. Combin, Volume 5 (1998) no. 1, R18, 35 pages | MR 1611984 | Zbl 0889.20002

[13] Faltings, Gerd A proof for the Verlinde formula, Journal of Algebraic Geometry, Volume 3 (1994) no. 2, pp. 347-374 | MR 1257326 | Zbl 0809.14009

[14] Di Francesco, Philippe; Mathieu, Pierre; Sénéchal, David Conformal field theory, Springer Science & Business Media, 1997 | Zbl 0869.53052

[15] Freed, Daniel S.; Hopkins, Michael J.; Teleman, Constantin Loop groups and twisted K-theory I, J. Topol., Volume 4 (2011) no. 4, pp. 737-798 | Article | MR 2860342 | Zbl 1241.19002

[16] Freed, Daniel S.; Hopkins, Michael J.; Teleman, Constantin Loop groups and twisted K-theory II, J. Am. Math. Soc., Volume 26 (2013) no. 3, pp. 595-644 | Article | MR 3037783 | Zbl 1273.22015

[17] Fulton, William Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, Volume 35, Cambridge University Press, 1997 | Zbl 0878.14034

[18] Fulton, William; Pandharipande, Rahul Notes on stable maps and quantum cohomology, Algebraic Geometry Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics) Volume 62 (1997) no. 2, pp. 45-96 | Article | MR 1492534 | Zbl 0898.14018

[19] Gepner, Doron Fusion rings and geometry, Comm. Math. Phys., Volume 141 (1991) no. 2, pp. 381-411 | Article | MR 1133272 | Zbl 0752.17033

[20] Gessel, Ira; Krattenthaler, Christian Cylindric partitions, Trans. Am. Math. Soc., Volume 349 (1997) no. 2, pp. 429-479 | Article | MR 1389777 | Zbl 0865.05003

[21] Ginzburg, Victor Perverse sheaves on a loop group and Langlands’ duality (1995) (preprint https://arxiv.org/abs/alg-geom/9511007)

[22] Golyshev, Vasily; Manivel, Laurent Quantum cohomology and the Satake isomorphism (2011) (https://arxiv.org/abs/1106.3120)

[23] Hori, Kentaro; Vafa, Cumrun Mirror symmetry (2000) (https://arxiv.org/abs/hep-th/0002222)

[24] Intriligator, Kenneth Fusion residues, Mod. Phys. Lett. A, Volume 6 (1991) no. 38, pp. 3543-3556 | Article | MR 1138873 | Zbl 1020.81847

[25] James, Gordon; Kerber, Adalbert The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, Volume 16, Addison-Wesley Publishing Co., Reading, Mass, 1981 | MR 644144 | Zbl 0491.20010

[26] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, 1994 | Zbl 0716.17022

[27] Kac, Victor G.; Peterson, Dale H. Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math, Volume 53 (1984) no. 2, pp. 125-264 | MR 750341 | Zbl 0584.17007

[28] Kim, Bumsig; Sabbah, Claude Quantum cohomology of the Grassmannian and alternate Thom–Sebastiani, Compos. Math., Volume 144 (2008) no. 1, pp. 221-246 | MR 2388562 | Zbl 1151.53075

[29] Kock, Joachim Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, Volume 59, Cambridge University Press, 2004 | MR 2037238 | Zbl 1046.57001

[30] Korff, Christian Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Commun. Math. Phys., Volume 318 (2013) no. 1, pp. 173-246 | Article | MR 3017067 | Zbl 1259.05186

[31] Korff, Christian; Stroppel, Catharina The sl ^(n) k -WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology, Adv. Math, Volume 225 (2010) no. 1, pp. 200-268 | Article | MR 2669352 | Zbl 1230.17010

[32] Kostant, Bertram The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group, Am. J. Math., Volume 81 (1959) no. 4, pp. 973-1032 | Article | MR 114875 | Zbl 0099.25603

[33] Lam, Thomas Affine Stanley symmetric functions, Am. J. Math., Volume 128 (2006) no. 6, pp. 1553-1586 | MR 2275911 | Zbl 1107.05095

[34] Lee, Seung Jin Positivity of cylindric skew Schur functions, J. Comb. Theory, Ser. A, Volume 168 (2019), pp. 26-49 | MR 3960164 | Zbl 1421.05008

[35] Lusztig, George Some examples of square integrable representations of semisimple p-adic groups, Trans. Am. Math. Soc., Volume 277 (1983) no. 2, pp. 623-653 | MR 694380 | Zbl 0526.22015

[36] Macdonald, Ian Grant Symmetric functions and Hall polynomials, Oxford University Press, 1998 | Zbl 0824.05059

[37] McNamara, Peter Cylindric skew Schur functions, Adv. Math, Volume 205 (2006) no. 1, pp. 275-312 | Article | MR 2254313 | Zbl 1110.05099

[38] Morrison, Andrew; Sottile, Frank Two Murnaghan–Nakayama Rules in Schubert Calculus, Ann. Comb., Volume 22 (2018) no. 2, pp. 363-375 | Article | MR 3803761 | Zbl 1395.05186

[39] Naculich, Stephen G.; Schnitzer, Howard J. Level-rank duality of the U(N) WZW model, Chern–Simons theory, and 2d qYM theory, J. High Energy Phys. (2007), JHEP06(2007)023, 20 pages | Article

[40] Osima, Masaru On the representations of the generalized symmetric group, Math. J. Okayama Univ, Volume 4 (1954) no. 1, pp. 39-56 | MR 67897 | Zbl 0058.02102

[41] Postnikov, Alexander Affine approach to quantum Schubert calculus, Duke Math. J., Volume 128 (2005) no. 3, pp. 473-509 | Article | MR 2145741 | Zbl 1081.14070

[42] Pushkarev, Igor A. On the representation theory of wreath products of finite groups and symmetric groups, J. Math. Sci., Volume 96 (1999) no. 5, pp. 3590-3599 | Article

[43] Rietsch, Konstanze Quantum cohomology rings of Grassmannians and total positivity, Duke Math. J., Volume 110 (2001) no. 3, pp. 523-553 | Article | MR 1869115 | Zbl 1013.14014

[44] Shi, Jian-yi The Kazhdan–Lusztig cells in certain affine Weyl groups, Lecture Notes in Math, Volume 1179, Springer, 1986 | MR 835214 | Zbl 0582.20030

[45] Siebert, Bernd; Tian, Gang On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math, Volume 1 (1997) no. 4, pp. 679-695 | Article | MR 1621570 | Zbl 0974.14040

[46] Specht, Wilhelm Eine Verallgemeinerung der symmetrischen Gruppe (1932) (Ph. D. Thesis) | Article | Zbl 0004.33804

[47] Stanley, Richard P. Enumerative Combinatorics, Volume 2, Cambridge Studies in Advanced Mathematics, Volume 62, Cambridge University Press, 1999 | Zbl 0928.05001

[48] Teleman, Constantin K-theory of the moduli space of bundles on a surface and deformations of the Verlinde algebra, Topology, geometry and quantum field theory. Proceedings of the 2002 Oxford symposium in honour of the 60th birthday of Graeme Segal, Oxford, UK, June 24–29, 2002 (London Mathematical Society Lecture Notes Series) Volume 308 (2004), pp. 358-378 | MR 2079380 | Zbl 1123.53048

[49] Teleman, Constantin; Woodward, Christopher T. The index formula for the moduli of G-bundles on a curve, Annals of Math., Volume 170 (2009) no. 2, pp. 495-527 | Article | MR 2552100 | Zbl 1193.14015

[50] Vafa, Cumrun Topological mirrors and quantum rings, Essays on Mirror Manifolds, International Press, 1992, pp. 96-117 | Zbl 0827.58073

[51] Verlinde, Erik Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys., B, Volume 300 (1988), pp. 360-376 | Article | Zbl 1180.81120

[52] Witten, Edward The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology and physics, Conf. Proc. Lecture Notes Geom. Topology, IV (1995), pp. 357-422 | Zbl 0863.53054

[53] Zelevinsky, Andrei V. Representations of Finite Classical Groups: A Hopf Algebra Approach, Lecture Notes in Math, Volume 869, Springer, 1981 | Zbl 0465.20009