We relate the linear asymptotic representation theory of the symmetric groups to its spin counterpart. In particular, we give explicit formulas which express the normalized irreducible spin characters evaluated on a strict partition with analogous normalized linear characters evaluated on the double partition . We also relate some natural filtration on the usual (linear) Kerov–Olshanski algebra of polynomial functions on the set of Young diagrams with its spin counterpart. Finally, we give a spin counterpart to Stanley formula for the characters of the symmetric groups in terms of counting maps.
Revised:
Accepted:
Published online:
Mots-clés : Projective representations of the symmetric groups, linear representations of the symmetric groups, asymptotic representation theory, Stanley character formula
Matsumoto, Sho 1; Śniady, Piotr 2
@article{ALCO_2020__3_1_249_0, author = {Matsumoto, Sho and \'Sniady, Piotr}, title = {Linear versus spin: representation theory of~the symmetric groups}, journal = {Algebraic Combinatorics}, pages = {249--280}, publisher = {MathOA foundation}, volume = {3}, number = {1}, year = {2020}, doi = {10.5802/alco.92}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.92/} }
TY - JOUR AU - Matsumoto, Sho AU - Śniady, Piotr TI - Linear versus spin: representation theory of the symmetric groups JO - Algebraic Combinatorics PY - 2020 SP - 249 EP - 280 VL - 3 IS - 1 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.92/ DO - 10.5802/alco.92 LA - en ID - ALCO_2020__3_1_249_0 ER -
%0 Journal Article %A Matsumoto, Sho %A Śniady, Piotr %T Linear versus spin: representation theory of the symmetric groups %J Algebraic Combinatorics %D 2020 %P 249-280 %V 3 %N 1 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.92/ %R 10.5802/alco.92 %G en %F ALCO_2020__3_1_249_0
Matsumoto, Sho; Śniady, Piotr. Linear versus spin: representation theory of the symmetric groups. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 249-280. doi : 10.5802/alco.92. https://alco.centre-mersenne.org/articles/10.5802/alco.92/
[1] Representations of symmetric groups and free probability, Adv. Math., Volume 138 (1998) no. 1, pp. 126-181 | DOI | MR | Zbl
[2] Characters of symmetric groups and free cumulants, Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001) (Lecture Notes in Math.), Volume 1815, Springer, Berlin, 2003, pp. 185-200 | DOI | MR | Zbl
[3] On the formula of Goulden and Rattan for Kerov polynomials, Sém. Lothar. Comb., Volume 55 (2005/07), Paper no. B55d, 5 pages | MR | Zbl
[4] Bijection between oriented maps and weighted non-oriented maps, Electron. J. Comb., Volume 24 (2017) no. 3, Paper no. 3.7, 34 pages | MR | Zbl
[5] Asymptotic results for Representation Theory (2018) (https://arxiv.org/abs/1805.04065)
[6] Gaussian fluctuations of Jack-deformed random Young diagrams, Probab. Theory Relat. Fields, Volume 174 (2019) no. 1-2, pp. 133-176 | DOI | MR | Zbl
[7] Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations, Adv. Math., Volume 225 (2010) no. 1, pp. 81-120 | DOI | MR | Zbl
[8] Jack polynomials and orientability generating series of maps, Sém. Lothar. Comb., Volume 70 (2014), Paper no. B70j, 50 pages | MR | Zbl
[9] Asymptotics for skew standard Young tableaux via bounds for characters (2017) (https://arxiv.org/abs/1710.05652) | Zbl
[10] Stanley’s formula for characters of the symmetric group, Ann. Comb., Volume 13 (2010) no. 4, pp. 453-461 | DOI | MR | Zbl
[11] Asymptotics of characters of symmetric groups related to Stanley character formula, Ann. Math. (2), Volume 173 (2011) no. 2, pp. 887-906 | DOI | MR | Zbl
[12] Zonal polynomials via Stanley’s coordinates and free cumulants, J. Algebra, Volume 334 (2011) no. 1, pp. 338-373 | DOI | MR | Zbl
[13] An explicit form for Kerov’s character polynomials, Trans. Am. Math. Soc., Volume 359 (2007) no. 8, pp. 3669-3685 | DOI | MR | Zbl
[14] The limit shape problem for ensembles of Young diagrams, SpringerBriefs in Mathematical Physics, 17, Springer, Tokyo, 2016, ix+73 pages | DOI | MR | Zbl
[15] Gaussian Limit for Projective Characters of Large Symmetric Groups, J. Math. Sci., New York, Volume 121 (2004) no. 3, pp. 2330-2344 | DOI | MR
[16] Plancherel measure on shifted Young diagrams, Representation theory, dynamical systems, and asymptotic combinatorics (Amer. Math. Soc. Transl. Ser. 2), Volume 217, Amer. Math. Soc., Providence, RI, 2006, pp. 73-86 | DOI | MR | Zbl
[17] Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 2, pp. 121-126 | MR | Zbl
[18] Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005, xiv+277 pages | DOI | MR | Zbl
[19] Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[20] On random shifted standard Young tableaux and -avoiding sorting networks (2018) (https://arxiv.org/abs/1804.01795)
[21] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR | Zbl
[22] A spin analogue of Kerov polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), Paper no. 053, 13 pages | MR | Zbl
[23] Stanley character formula for the spin characters of the symmetric groups, Séminaire Lotharingien de Combinatoire, Volume 82B (2019), Paper no. #1, 12 pages Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana)
[24] Random strict partitions and random shifted tableaux, Selecta Mathematica, Volume 26 (2020) no. 1, Paper no. 10, 59 pages | DOI
[25] Representation theory of symmetric groups, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2017, xvi+666 pages | DOI | MR | Zbl
[26] Young’s orthogonal form of irreducible projective representations of the symmetric group, J. Lond. Math. Soc., II. Ser., Volume 42 (1990) no. 3, pp. 437-451 | DOI | MR | Zbl
[27] Explicit formulae for Kerov polynomials, J. Algebr. Comb., Volume 33 (2011) no. 1, pp. 141-151 | DOI | MR | Zbl
[28] Upper bound on the characters of the symmetric groups for balanced Young diagrams and a generalized Frobenius formula, Adv. Math., Volume 218 (2008) no. 3, pp. 673-695 | DOI | MR | Zbl
[29] Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., Volume 139 (1911), pp. 155-250 | DOI | MR | Zbl
[30] Gaussian fluctuations of characters of symmetric groups and of Young diagrams, Probab. Theory Relat. Fields, Volume 136 (2006) no. 2, pp. 263-297 | DOI | MR | Zbl
[31] Combinatorics of asymptotic representation theory, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2013, pp. 531-545 | MR | Zbl
[32] Stanley character polynomials, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 323-334 | DOI | MR | Zbl
[33] Asymptotics of Jack characters, J. Comb. Theory, Ser. A, Volume 166 (2019), pp. 91-143 | DOI | MR | Zbl
[34] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | DOI | MR | Zbl
[35] Irreducible symmetric group characters of rectangular shape, Sém. Lothar. Comb., Volume 50 (2003/04), Paper no. B50d, 11 pages | MR | Zbl
[36] A conjectured combinatorial interpretation of the normalized irreducible character values of the symmetric group (2006) (https://arxiv.org/abs/math/0606467)
[37] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | DOI | MR | Zbl
[38] Lectures on spin representation theory of symmetric groups, Bull. Inst. Math., Acad. Sin. (N.S.), Volume 7 (2012) no. 1, pp. 91-164 | MR | Zbl
Cited by Sources: