Some applications of Rees products of posets to equivariant gamma-positivity
Algebraic Combinatorics, Volume 3 (2020) no. 1, p. 281-300

The Rees product of partially ordered sets was introduced by Björner and Welker. Using the theory of lexicographic shellability, Linusson, Shareshian and Wachs proved formulas, of significance in the theory of gamma-positivity, for the dimension of the homology of the Rees product of a graded poset P with a certain t-analogue of the chain of the same length as P. Equivariant generalizations of these formulas are proven in this paper, when a group of automorphisms acts on P, and are applied to establish the Schur gamma-positivity of certain symmetric functions arising in algebraic and geometric combinatorics.

Received : 2018-07-19
Revised : 2019-04-30
Accepted : 2019-05-06
Published online : 2020-02-12
DOI : https://doi.org/10.5802/alco.85
Classification:  05E05,  05E18,  05E45,  06A07
Keywords: Rees product, poset homology, group action, Schur gamma-positivity, local face module
@article{ALCO_2020__3_1_281_0,
     author = {Athanasiadis, Christos A.},
     title = {Some applications of Rees products of posets to equivariant gamma-positivity},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {3},
     number = {1},
     year = {2020},
     pages = {281-300},
     doi = {10.5802/alco.85},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2020__3_1_281_0}
}
Athanasiadis, Christos A. Some applications of Rees products of posets to equivariant gamma-positivity. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 281-300. doi : 10.5802/alco.85. alco.centre-mersenne.org/item/ALCO_2020__3_1_281_0/

[1] Adin, Ron M.; Athanasiadis, Christos A.; Elizalde, Sergi; Roichman, Yuval Character formulas and descents for the hyperoctahedral group, Adv. in Appl. Math., Volume 87 (2017), pp. 128-169 | Article | MR 3629266 | Zbl 1364.05087

[2] Athanasiadis, Christos A. Flag subdivisions and γ-vectors, Pacific J. Math., Volume 259 (2012) no. 2, pp. 257-278 | Article | MR 2988491 | Zbl 1255.05200

[3] Athanasiadis, Christos A. Edgewise subdivisions, local h-polynomials, and excedances in the wreath product r 𝔖 n , SIAM J. Discrete Math., Volume 28 (2014) no. 3, pp. 1479-1492 | Article | MR 3262590 | Zbl 1305.05232

[4] Athanasiadis, Christos A. A survey of subdivisions and local h-vectors, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 39-51 | Article | Zbl 1370.05225

[5] Athanasiadis, Christos A. Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., Volume 77 ([2016-2018]), B77i, 64 pages | MR 3878174 | Zbl 06973821

[6] Athanasiadis, Christos A. Binomial Eulerian polynomials for colored permutations (2018) (https://arxiv.org/abs/1812.00434)

[7] Björner, Anders Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math., Volume 52 (1984) no. 3, pp. 173-212 | Article | MR 744856 | Zbl 0546.06001

[8] Björner, Anders; Welker, Volkmar Segre and Rees products of posets, with ring-theoretic applications, J. Pure Appl. Algebra, Volume 198 (2005) no. 1-3, pp. 43-55 | Article | MR 2132872 | Zbl 1062.05147

[9] Dolgachev, Igor; Lunts, Valery A character formula for the representation of a Weyl group in the cohomology of the associated toric variety, J. Algebra, Volume 168 (1994) no. 3, pp. 741-772 | Article | MR 1293622 | Zbl 0813.14040

[10] Gal, Światosław R. Real root conjecture fails for five- and higher-dimensional spheres, Discrete Comput. Geom., Volume 34 (2005) no. 2, pp. 269-284 | MR 2155722 | Zbl 1085.52005

[11] Lehrer, Gustav I. Rational points and Coxeter group actions on the cohomology of toric varieties, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 2, pp. 671-688 | Article | Numdam | MR 2410386 | Zbl 1148.14026

[12] Linusson, Svante; Shareshian, John; Wachs, Michelle L. Rees products and lexicographic shellability, J. Comb., Volume 3 (2012) no. 3, pp. 243-276 | MR 3029437 | Zbl 1291.05224

[13] Poirier, Stéphane Cycle type and descent set in wreath products, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995) (Discrete Math.) Volume 180 (1998) no. 1-3, pp. 315-343 | MR 1603753 | Zbl 0892.05003

[14] Procesi, Claudio The toric variety associated to Weyl chambers, Mots (Lang. Raison. Calc.), Hermès, Paris, 1990, pp. 153-161 | Zbl 1177.14090

[15] Sagan, Bruce E. The symmetric group, Graduate Texts in Mathematics, Volume 203, Springer-Verlag, New York, 2001, xvi+238 pages | MR 1824028 | Zbl 0964.05070

[16] Savvidou, Christina Barycentric subdivisions, clusters and permutation enumeration (in Greek) (2013) (Ph. D. Thesis)

[17] Shareshian, John; Wachs, Michelle L. Poset homology of Rees products, and q-Eulerian polynomials, Electron. J. Combin., Volume 16 (2009) no. 2, Research Paper R20, 29 pages (Special volume in honor of Anders Björner) | MR 2576383 | Zbl 1186.05019

[18] Shareshian, John; Wachs, Michelle L. Eulerian quasisymmetric functions, Adv. Math., Volume 225 (2010) no. 6, pp. 2921-2966 | Article | MR 2728998 | Zbl 1205.05012

[19] Shareshian, John; Wachs, Michelle L. From poset topology to q-Eulerian polynomials to Stanley’s chromatic symmetric functions, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 301-321 | Article | Zbl 1364.05085

[20] Shareshian, John; Wachs, Michelle L. Gamma-positivity of variations of Eulerian polynomials (2018) (https://arxiv.org/abs/1702.06666v3)

[21] Stanley, Richard P. Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A, Volume 32 (1982) no. 2, pp. 132-161 | Article | MR 654618 | Zbl 0496.06001

[22] Stanley, Richard P. Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) (Ann. New York Acad. Sci.) Volume 576, New York Acad. Sci., New York, 1989, pp. 500-535 | MR 1110850 | Zbl 0792.05008

[23] Stanley, Richard P. Subdivisions and local h-vectors, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | MR 1157293 | Zbl 0768.05100

[24] Stanley, Richard P. Combinatorics and commutative algebra, Progress in Mathematics, Volume 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR 1453579 | Zbl 0838.13008

[25] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, Volume 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | MR 1676282

[26] Stanley, Richard P. Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, Volume 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR 2868112 | Zbl 1247.05003

[27] Stembridge, John R. The projective representations of the hyperoctahedral group, J. Algebra, Volume 145 (1992) no. 2, pp. 396-453 | Article | MR 1144940 | Zbl 0759.20005

[28] Stembridge, John R. Some permutation representations of Weyl groups associated with the cohomology of toric varieties, Adv. Math., Volume 106 (1994) no. 2, pp. 244-301 | Article | MR 1279220 | Zbl 0838.20050

[29] Sundaram, Sheila The homology representations of the symmetric group on Cohen–Macaulay subposets of the partition lattice, Adv. Math., Volume 104 (1994) no. 2, pp. 225-296 | Article | MR 1273390 | Zbl 0823.05063

[30] Wachs, Michelle L. Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Math. Ser.) Volume 13, Amer. Math. Soc., 2007, pp. 497-615 | Article | MR 2383132 | Zbl 1135.06001