Hecke algebras of simply-laced type with independent parameters
Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 667-691.

We study the (complex) Hecke algebra S (q) of a finite simply-laced Coxeter system (W,S) with independent parameters q{rootsofunity} S . We construct its irreducible representations and projective indecomposable representations. We obtain the quiver of this algebra and determine when it is of finite representation type. We provide decomposition formulas for induced and restricted representations between the algebra S (q) and the algebra R (q| R ) with RS. Our results demonstrate an interesting combination of the representation theory of finite Coxeter groups and their 0-Hecke algebras, including a two-sided duality between the induced and restricted representations.

Received: 2019-03-11
Revised: 2019-12-27
Accepted: 2019-12-28
Published online: 2020-06-02
DOI: https://doi.org/10.5802/alco.108
Classification: 16G30,  05E10
Keywords: Hecke algebra, independent parameters, simply-laced Coxeter system, induction and restriction, duality.
@article{ALCO_2020__3_3_667_0,
     author = {Huang, Jia},
     title = {Hecke algebras of simply-laced type with independent parameters},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {3},
     number = {3},
     year = {2020},
     pages = {667-691},
     doi = {10.5802/alco.108},
     language = {en},
     url = {alco.centre-mersenne.org/item/ALCO_2020__3_3_667_0/}
}
Huang, Jia. Hecke algebras of simply-laced type with independent parameters. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 667-691. doi : 10.5802/alco.108. https://alco.centre-mersenne.org/item/ALCO_2020__3_3_667_0/

[1] Adin, Ron M.; Brenti, Francesco; Roichman, Yuval A construction of Coxeter group representations. II, J. Algebra, Volume 306 (2006) no. 1, pp. 208-226 | Article | MR 2271580 | Zbl 1159.20007

[2] Adin, Ron M.; Brenti, Francesco; Roichman, Yuval A unified construction of Coxeter group representations, Adv. Appl. Math., Volume 37 (2006) no. 1, pp. 31-67 | Article | MR 2232081 | Zbl 1150.20002

[3] Bergeron, Nantel; Li, Huilan Algebraic structures on Grothendieck groups of a tower of algebras, J. Algebra, Volume 321 (2009) no. 8, pp. 2068-2084 | Article | MR 2501510 | Zbl 1185.16008

[4] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Grad. Texts Math., Volume 231, Springer, New York, 2005, xiv+363 pages | MR 2133266 | Zbl 1110.05001

[5] Björner, Anders; Wachs, Michelle L. Generalized quotients in Coxeter groups, Trans. Am. Math. Soc., Volume 308 (1988) no. 1, pp. 1-37 | Article | MR 946427 | Zbl 0659.05007

[6] Curtis, Charles W.; Reiner, Irving Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981, xxi+819 pages (With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication) | MR 632548 | Zbl 0469.20001

[7] Denton, Tom; Hivert, Florent; Schilling, Anne; Thiéry, Nicolas M. On the representation theory of finite 𝒥-trivial monoids, Sémin. Lothar. Comb., Volume 64 (2010/11), Art. B64d, 44 pages | MR 2800981 | Zbl 1296.05201

[8] Dipper, Richard; James, Gordon Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., III. Ser., Volume 52 (1986) no. 1, pp. 20-52 | Article | MR 812444 | Zbl 0587.20007

[9] Duchamp, Gérard; Hivert, Florent; Thibon, Jean-Yves Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Int. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 671-717 | Article | MR 1935570 | Zbl 1027.05107

[10] Etingof, Pavel; Golberg, Oleg; Hensel, Sebastian; Liu, Tiankai; Schwendner, Alex; Vaintrob, Dmitry; Yudovina, Elena Introduction to representation theory, Stud. Math. Libr., Volume 59, American Mathematical Society, Providence, RI, 2011, viii+228 pages (With historical interludes by Slava Gerovitch) | Article | MR 2808160 | Zbl 1242.20001

[11] Geck, Meinolf; Jacon, Nicolas Representations of Hecke algebras at roots of unity, Algebr. Appl., Volume 15, Springer-Verlag London, Ltd., London, 2011, xii+401 pages | Article | MR 2799052 | Zbl 1232.20008

[12] Goodman, Frederick M.; Wenzl, Hans Iwahori-Hecke algebras of type A at roots of unity, J. Algebra, Volume 215 (1999) no. 2, pp. 694-734 | Article | MR 1686212 | Zbl 1027.17012

[13] Grinberg, Darij; Reiner, Victor Hopf algebras in Combinatorics (2014) (https://arxiv.org/abs/1409.8356)

[14] Huang, Jia 0-Hecke algebra actions on coinvariants and flags, J. Algebr. Comb., Volume 40 (2014) no. 1, pp. 245-278 | Article | MR 3226825 | Zbl 1297.05255

[15] Huang, Jia 0-Hecke algebra action on the Stanley–Reisner ring of the Boolean algebra, Ann. Comb., Volume 19 (2015) no. 2, pp. 293-323 | Article | MR 3347384 | Zbl 1316.05125

[16] Huang, Jia Hecke algebras with independent parameters, J. Algebr. Comb., Volume 43 (2016) no. 3, pp. 521-551 | Article | MR 3482439 | Zbl 1342.20003

[17] Huang, Jia A tableau approach to the representation theory of 0-Hecke algebras, Ann. Comb., Volume 20 (2016) no. 4, pp. 831-868 | Article | MR 3572389 | Zbl 1354.05140

[18] Huang, Jia A uniform generalization of some combinatorial Hopf algebras, Algebr. Represent. Theory, Volume 20 (2017) no. 2, pp. 379-431 | Article | MR 3638354 | Zbl 1367.16036

[19] Humphreys, James E. Reflection groups and Coxeter groups, Camb. Stud. Adv. Math., Volume 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | Article | MR 1066460 | Zbl 0725.20028

[20] König, Sebastian The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions, Algebr. Comb., Volume 2 (2019) no. 5, pp. 735-751 | Article | MR 4023564 | Zbl 1421.05092

[21] Krob, Daniel; Thibon, Jean-Yves Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q=0, J. Algebr. Comb., Volume 6 (1997) no. 4, pp. 339-376 | Article | MR 1471894 | Zbl 0881.05120

[22] Li, Fang; Chen, Lili The natural quiver of an Artinian algebra, Algebr. Represent. Theory, Volume 13 (2010) no. 5, pp. 623-636 | Article | MR 2684224 | Zbl 1254.16012

[23] Lusztig, George On a theorem of Benson and Curtis, J. Algebra, Volume 71 (1981) no. 2, pp. 490-498 | Article | MR 630610 | Zbl 0465.20042

[24] Lusztig, George Hecke algebras with unequal parameters, CRM Monogr. Ser., Volume 18, American Mathematical Society, Providence, RI, 2003, vi+136 pages | MR 1974442 | Zbl 1051.20003

[25] Norton, P. N. 0-Hecke algebras, J. Aust. Math. Soc., Ser. A, Volume 27 (1979) no. 3, pp. 337-357 | Article | MR 532754

[26] Simson, Daniel; Skowroński, Andrzej Elements of the representation theory of associative algebras. Vol. 3, Lond. Math. Soc. Stud. Texts, Volume 72, Cambridge University Press, Cambridge, 2007, xii+456 pages (Representation-infinite tilted algebras) | MR 2382332 | Zbl 1131.16001

[27] Sloane, Neil J. A. The on-line encyclopedia of integer sequences, Notices Am. Math. Soc., Volume 65 (2018) no. 9, pp. 1062-1074 | MR 3822822 | Zbl 06989892

[28] Solomon, Louis A decomposition of the group algebra of a finite Coxeter group, J. Algebra, Volume 9 (1968), pp. 220-239 | Article | MR 232868

[29] Steinberg, Benjamin Representation theory of finite monoids, Universitext, Springer, Cham, 2016, xxiv+317 pages | Article | MR 3525092 | Zbl 1428.20003

[30] Stembridge, John R. A short derivation of the Möbius function for the Bruhat order, J. Algebr. Comb., Volume 25 (2007) no. 2, pp. 141-148 | Article | MR 2310418 | Zbl 1150.20028

[31] Tewari, Vasu V.; van Willigenburg, Stephanie J. Modules of the 0-Hecke algebra and quasisymmetric Schur functions, Adv. Math., Volume 285 (2015), pp. 1025-1065 | Article | MR 3406520 | Zbl 1323.05132

[32] Tewari, Vasu V.; van Willigenburg, Stephanie J. Permuted composition tableaux, 0-Hecke algebra and labeled binary trees, J. Comb. Theory, Ser. A, Volume 161 (2019), pp. 420-452 | Article | MR 3861786 | Zbl 1400.05272