The goal of this short note is to study the secant varieties of the Segre embedding of the product by means of the standard tools of combinatorial commutative algebra. We reprove and extend to arbitrary characteristic the results of Landsberg and Weyman [] regarding the defining ideal and the Cohen–Macaulay property of the secant varieties. Furthermore we compute their degrees and give a bound for their Castelnuovo–Mumford regularities, which are sharp in many cases.
Revised:
Accepted:
Published online:
Keywords: Segre products, secant varieties, Gröbner bases, tensors.
Conca, Aldo 1; De Negri, Emanuela 1; Stojanac, Željka 2
@article{ALCO_2020__3_5_1011_0, author = {Conca, Aldo and De Negri, Emanuela and Stojanac, \v{Z}eljka}, title = {A characteristic free approach to secant varieties of triple {Segre} products}, journal = {Algebraic Combinatorics}, pages = {1011--1021}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.115}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.115/} }
TY - JOUR AU - Conca, Aldo AU - De Negri, Emanuela AU - Stojanac, Željka TI - A characteristic free approach to secant varieties of triple Segre products JO - Algebraic Combinatorics PY - 2020 SP - 1011 EP - 1021 VL - 3 IS - 5 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.115/ DO - 10.5802/alco.115 LA - en ID - ALCO_2020__3_5_1011_0 ER -
%0 Journal Article %A Conca, Aldo %A De Negri, Emanuela %A Stojanac, Željka %T A characteristic free approach to secant varieties of triple Segre products %J Algebraic Combinatorics %D 2020 %P 1011-1021 %V 3 %N 5 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.115/ %R 10.5802/alco.115 %G en %F ALCO_2020__3_5_1011_0
Conca, Aldo; De Negri, Emanuela; Stojanac, Željka. A characteristic free approach to secant varieties of triple Segre products. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1011-1021. doi : 10.5802/alco.115. https://alco.centre-mersenne.org/articles/10.5802/alco.115/
[1] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993, xii+403 pages | MR | Zbl
[2] Binomial determinants, paths, and hook length formulae, Adv. Math., Volume 58 (1985) no. 3, pp. 300-321 | DOI | MR | Zbl
[3] Initial complexes of prime ideals, Adv. Math., Volume 116 (1995) no. 2, pp. 365-376 | DOI | MR | Zbl
[4] Tensors: geometry and applications, Graduate Studies in Mathematics, 128, American Mathematical Society, Providence, RI, 2012, xx+439 pages | MR | Zbl
[5] On the ideals and singularities of secant varieties of Segre varieties, Bull. Lond. Math. Soc., Volume 39 (2007) no. 4, pp. 685-697 | DOI | MR | Zbl
[6] A dual of Dilworth’s decomposition theorem, Amer. Math. Monthly, Volume 78 (1971), pp. 876-877 | DOI | MR | Zbl
[7] Are all secant varieties of Segre products arithmetically Cohen–Macaulay? (2016) (https://arxiv.org/abs/1603.08980)
[8] On the ideal of an embedded join, J. Algebra, Volume 226 (2000) no. 1, pp. 1-14 | DOI | MR | Zbl
[9] Combinatorial secant varieties, Pure Appl. Math. Q., Volume 2 (2006) no. 3, pp. 867-891 (Special Issue: In honor of Robert D. MacPherson. Part 1) | DOI | MR | Zbl
Cited by Sources: