We study a family of dissections of flow polytopes arising from the subdivision algebra. To each dissection of a flow polytope, we associate a polynomial, called the left-degree polynomial, which we show is invariant of the dissection considered (proven independently by Grinberg). We prove that left-degree polynomials encode integer points of generalized permutahedra. Using that certain left-degree polynomials are related to Grothendieck polynomials, we resolve special cases of conjectures by Monical, Tokcan, and Yong regarding the saturated Newton polytope property of Grothendieck polynomials.
Revised:
Accepted:
Published online:
Keywords: Flow polytopes, Grothendieck polynomials, generalized permutahedra.
Mészáros, Karola 1; St. Dizier, Avery 1
@article{ALCO_2020__3_5_1197_0, author = {M\'esz\'aros, Karola and St.~Dizier, Avery}, title = {From generalized permutahedra to {Grothendieck} polynomials via flow polytopes}, journal = {Algebraic Combinatorics}, pages = {1197--1229}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.136}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.136/} }
TY - JOUR AU - Mészáros, Karola AU - St. Dizier, Avery TI - From generalized permutahedra to Grothendieck polynomials via flow polytopes JO - Algebraic Combinatorics PY - 2020 SP - 1197 EP - 1229 VL - 3 IS - 5 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.136/ DO - 10.5802/alco.136 LA - en ID - ALCO_2020__3_5_1197_0 ER -
%0 Journal Article %A Mészáros, Karola %A St. Dizier, Avery %T From generalized permutahedra to Grothendieck polynomials via flow polytopes %J Algebraic Combinatorics %D 2020 %P 1197-1229 %V 3 %N 5 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.136/ %R 10.5802/alco.136 %G en %F ALCO_2020__3_5_1197_0
Mészáros, Karola; St. Dizier, Avery. From generalized permutahedra to Grothendieck polynomials via flow polytopes. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1197-1229. doi : 10.5802/alco.136. https://alco.centre-mersenne.org/articles/10.5802/alco.136/
[1] Kostant partitions functions and flow polytopes, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 447-469 | DOI | MR | Zbl
[2] Counting integer flows in networks, Found. Comput. Math., Volume 4 (2004) no. 3, pp. 277-314 | DOI | MR | Zbl
[3] Computing the continuous discretely. Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2007, xviii+226 pages | DOI | MR | Zbl
[4] Toric matrix Schubert varieties and their polytopes, Proc. Amer. Math. Soc., Volume 144 (2016) no. 12, pp. 5081-5096 | DOI | MR | Zbl
[5] Subword complexes via triangulations of root polytopes, Algebr. Comb., Volume 1 (2018) no. 3, pp. 395-414 | DOI | MR | Zbl
[6] Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math., Volume 332 (2018), pp. 465-475 | DOI | MR | Zbl
[7] -unique reductions for Mészáros’s subdivision algebra, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), Paper no. Paper No. 078, 34 pages | DOI | MR | Zbl
[8] Flow polytopes and the space of diagonal harmonics, Canad. J. Math., Volume 71 (2019) no. 6, pp. 1495-1521 | DOI | MR | Zbl
[9] Root polytopes, triangulations, and the subdivision algebra I, Trans. Amer. Math. Soc., Volume 363 (2011) no. 8, pp. 4359-4382 | DOI | MR | Zbl
[10] Root polytopes, triangulations, and the subdivision algebra II, Trans. Amer. Math. Soc., Volume 363 (2011) no. 11, pp. 6111-6141 | DOI | MR | Zbl
[11] Product formulas for volumes of flow polytopes, Proc. Amer. Math. Soc., Volume 143 (2015) no. 3, pp. 937-954 | DOI | MR | Zbl
[12] Flow polytopes of signed graphs and the Kostant partition function, Int. Math. Res. Not. IMRN (2015) no. 3, pp. 830-871 | DOI | MR | Zbl
[13] The polytope of Tesler matrices, Selecta Math. (N.S.), Volume 23 (2017) no. 1, pp. 425-454 | DOI | MR | Zbl
[14] Newton polytopes in algebraic combinatorics, Selecta Math. (N.S.), Volume 25 (2019) no. 5, Paper no. Paper No. 66, 37 pages | DOI | MR | Zbl
[15] Faces of generalized permutohedra, Doc. Math., Volume 13 (2008), pp. 207-273 | MR | Zbl
[16] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[17] Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algorithms and Combinatorics, 24, Springer-Verlag, Berlin, 2003, p. i-xxxiv and 649–1217 (Matroids, trees, stable sets, Chapters 39–69) | MR | Zbl
[18] A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom., Volume 27 (2002) no. 4, pp. 603-634 | DOI | MR | Zbl
Cited by Sources: