From generalized permutahedra to Grothendieck polynomials via flow polytopes
Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1197-1229.

We study a family of dissections of flow polytopes arising from the subdivision algebra. To each dissection of a flow polytope, we associate a polynomial, called the left-degree polynomial, which we show is invariant of the dissection considered (proven independently by Grinberg). We prove that left-degree polynomials encode integer points of generalized permutahedra. Using that certain left-degree polynomials are related to Grothendieck polynomials, we resolve special cases of conjectures by Monical, Tokcan, and Yong regarding the saturated Newton polytope property of Grothendieck polynomials.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.136
Classification: 05E05, 05C21, 52B12
Keywords: Flow polytopes, Grothendieck polynomials, generalized permutahedra.

Mészáros, Karola 1; St. Dizier, Avery 1

1 Cornell University Department of Mathematics Ithaca NY 14853, USA.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2020__3_5_1197_0,
     author = {M\'esz\'aros, Karola and St.~Dizier, Avery},
     title = {From generalized permutahedra to {Grothendieck} polynomials via flow polytopes},
     journal = {Algebraic Combinatorics},
     pages = {1197--1229},
     publisher = {MathOA foundation},
     volume = {3},
     number = {5},
     year = {2020},
     doi = {10.5802/alco.136},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.136/}
}
TY  - JOUR
AU  - Mészáros, Karola
AU  - St. Dizier, Avery
TI  - From generalized permutahedra to Grothendieck polynomials via flow polytopes
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 1197
EP  - 1229
VL  - 3
IS  - 5
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.136/
DO  - 10.5802/alco.136
LA  - en
ID  - ALCO_2020__3_5_1197_0
ER  - 
%0 Journal Article
%A Mészáros, Karola
%A St. Dizier, Avery
%T From generalized permutahedra to Grothendieck polynomials via flow polytopes
%J Algebraic Combinatorics
%D 2020
%P 1197-1229
%V 3
%N 5
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.136/
%R 10.5802/alco.136
%G en
%F ALCO_2020__3_5_1197_0
Mészáros, Karola; St. Dizier, Avery. From generalized permutahedra to Grothendieck polynomials via flow polytopes. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1197-1229. doi : 10.5802/alco.136. https://alco.centre-mersenne.org/articles/10.5802/alco.136/

[1] Baldoni, Welleda; Vergne, Michèle Kostant partitions functions and flow polytopes, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 447-469 | DOI | MR | Zbl

[2] Baldoni-Silva, Welleda; De Loera, Jesús A.; Vergne, Michèle Counting integer flows in networks, Found. Comput. Math., Volume 4 (2004) no. 3, pp. 277-314 | DOI | MR | Zbl

[3] Beck, Matthias; Robins, Sinai Computing the continuous discretely. Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2007, xviii+226 pages | DOI | MR | Zbl

[4] Escobar, Laura; Mészáros, Karola Toric matrix Schubert varieties and their polytopes, Proc. Amer. Math. Soc., Volume 144 (2016) no. 12, pp. 5081-5096 | DOI | MR | Zbl

[5] Escobar, Laura; Mészáros, Karola Subword complexes via triangulations of root polytopes, Algebr. Comb., Volume 1 (2018) no. 3, pp. 395-414 | DOI | MR | Zbl

[6] Fink, Alex; Mészáros, Karola; St. Dizier, Avery Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math., Volume 332 (2018), pp. 465-475 | DOI | MR | Zbl

[7] Grinberg, Darij t-unique reductions for Mészáros’s subdivision algebra, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), Paper no. Paper No. 078, 34 pages | DOI | MR | Zbl

[8] Liu, Ricky I.; Morales, Alejandro H.; Mészáros, Karola Flow polytopes and the space of diagonal harmonics, Canad. J. Math., Volume 71 (2019) no. 6, pp. 1495-1521 | DOI | MR | Zbl

[9] Mészáros, Karola Root polytopes, triangulations, and the subdivision algebra I, Trans. Amer. Math. Soc., Volume 363 (2011) no. 8, pp. 4359-4382 | DOI | MR | Zbl

[10] Mészáros, Karola Root polytopes, triangulations, and the subdivision algebra II, Trans. Amer. Math. Soc., Volume 363 (2011) no. 11, pp. 6111-6141 | DOI | MR | Zbl

[11] Mészáros, Karola Product formulas for volumes of flow polytopes, Proc. Amer. Math. Soc., Volume 143 (2015) no. 3, pp. 937-954 | DOI | MR | Zbl

[12] Mészáros, Karola; Morales, Alejandro H. Flow polytopes of signed graphs and the Kostant partition function, Int. Math. Res. Not. IMRN (2015) no. 3, pp. 830-871 | DOI | MR | Zbl

[13] Mészáros, Karola; Morales, Alejandro H.; Rhoades, Brendon The polytope of Tesler matrices, Selecta Math. (N.S.), Volume 23 (2017) no. 1, pp. 425-454 | DOI | MR | Zbl

[14] Monical, Cara; Tokcan, Neriman; Yong, Alexander Newton polytopes in algebraic combinatorics, Selecta Math. (N.S.), Volume 25 (2019) no. 5, Paper no. Paper No. 66, 37 pages | DOI | MR | Zbl

[15] Postnikov, Alex; Reiner, Victor; Williams, Lauren Faces of generalized permutohedra, Doc. Math., Volume 13 (2008), pp. 207-273 | MR | Zbl

[16] Postnikov, Alexander Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl

[17] Schrijver, Alexander Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algorithms and Combinatorics, 24, Springer-Verlag, Berlin, 2003, p. i-xxxiv and 649–1217 (Matroids, trees, stable sets, Chapters 39–69) | MR | Zbl

[18] Stanley, Richard P.; Pitman, Jim A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom., Volume 27 (2002) no. 4, pp. 603-634 | DOI | MR | Zbl

Cited by Sources: