Principal specializations of Schubert polynomials in classical types
Algebraic Combinatorics, Volume 4 (2021) no. 2, pp. 273-287.

There is a remarkable formula for the principal specialization of a type A Schubert polynomial as a weighted sum over reduced words. Taking appropriate limits transforms this to an identity for the backstable Schubert polynomials recently introduced by Lam, Lee, and Shimozono. This note identifies some analogues of the latter formula for principal specializations of Schubert polynomials in classical types B, C, and D. We also describe some more general identities for Grothendieck polynomials. As a related application, we derive a simple proof of a pipe dream formula for involution Grothendieck polynomials.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/alco.148
Classification: 05E05,  20C08,  14M15
Keywords: Schubert polynomials, Grothendieck polynomials, Coxeter systems, reduced words.
@article{ALCO_2021__4_2_273_0,
     author = {Marberg, Eric and Pawlowski, Brendan},
     title = {Principal specializations of Schubert polynomials in classical types},
     journal = {Algebraic Combinatorics},
     pages = {273--287},
     publisher = {MathOA foundation},
     volume = {4},
     number = {2},
     year = {2021},
     doi = {10.5802/alco.148},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.148/}
}
Marberg, Eric; Pawlowski, Brendan. Principal specializations of Schubert polynomials in classical types. Algebraic Combinatorics, Volume 4 (2021) no. 2, pp. 273-287. doi : 10.5802/alco.148. https://alco.centre-mersenne.org/articles/10.5802/alco.148/

[1] Billey, Sara C.; Haiman, Mark Schubert polynomials for the classical groups, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 443-482 | Article | MR 1290232 | Zbl 0832.05098

[2] Billey, Sara C.; Holroyd, Alexander E.; Young, Benjamin J. A bijective proof of Macdonald’s reduced word formula, Algebr. Comb., Volume 2 (2019) no. 2, pp. 217-248 | Article | MR 3934829 | Zbl 1409.05024

[3] Billey, Sara C.; Jockusch, William; Stanley, Richard P. Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | Article | MR 1241505 | Zbl 0790.05093

[4] Buch, Anders S. A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | Article | MR 1946917 | Zbl 1090.14015

[5] Fomin, Sergey; Kirillov, Anatol N. Reduced words and plane partitions, J. Algebraic Combin., Volume 6 (1997) no. 4, pp. 311-319 | Article | MR 1471891 | Zbl 0882.05010

[6] Fomin, Sergey; Stanley, Richard P. Schubert polynomials and the nil-Coxeter algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | Article | MR 1265793 | Zbl 0809.05091

[7] Hamaker, Zachary; Marberg, Eric; Pawlowski, Brendan Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures, J. Combin. Theory Ser. A, Volume 160 (2018), pp. 217-260 | Article | MR 3846203 | Zbl 1394.05139

[8] Hamaker, Zachary; Marberg, Eric; Pawlowski, Brendan Involution pipe dreams (2019) (https://arxiv.org/abs/1911.12009)

[9] Kirillov, Anatol N.; Naruse, Hiroshi Construction of double Grothendieck polynomials of classical types using idCoxeter algebras, Tokyo J. Math., Volume 39 (2017) no. 3, pp. 695-728 | Article | MR 3634289 | Zbl 1364.05081

[10] Lam, Thomas; Lee, Seung Jin; Shimozono, Mark Back stable Schubert calculus (2018) (https://arxiv.org/abs/1806.11233)

[11] Macdonald, Ian G. Notes on Schubert Polynomials, Laboratoire de combinatoire et d’informatique mathématique (LACIM), Université du Québec à Montréal, 1991

[12] Marberg, Eric A symplectic refinement of shifted Hecke insertion, J. Combin. Theory Ser. A, Volume 173 (2020), Paper no. 105216, 50 pages | Article | MR 4067984 | Zbl 1435.05236

[13] Marberg, Eric; Pawlowski, Brendan K-theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), Paper no. 107299, 43 pages | Article | MR 4126717 | Zbl 1440.19006

[14] Marberg, Eric; Pawlowski, Brendan On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, Paper no. 106463, 22 pages | Article | MR 4114972 | Zbl 1442.14158

[15] Pawlowski, Brendan Universal graph Schubert varieties (2019) (https://arxiv.org/abs/1902.09168)

[16] Young, Benjamin A Markov growth process for Macdonald’s distribution on reduced words (2014) (https://arxiv.org/abs/1409.7714)