Based upon a previous work of Manjunath and Sturmfels for a finite, complete, undirected graph, and a refined algorithm by Eröcal, Motsak, Schreyer and Steenpaß for computing syzygies, we display a free resolution of the lattice ideal associated to a finite, strongly connected, weighted, directed graph. Moreover, the resolution is minimal precisely when the digraph is strongly complete.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.15
Keywords: Directed graph, lattice ideal, Gröbner basis, minimal free resolution
O’Carroll, Liam 1; Planas-Vilanova, Francesc 2
@article{ALCO_2018__1_2_283_0, author = {O{\textquoteright}Carroll, Liam and Planas-Vilanova, Francesc}, title = {Minimal free resolutions of lattice ideals of digraphs}, journal = {Algebraic Combinatorics}, pages = {283--326}, publisher = {MathOA foundation}, volume = {1}, number = {2}, year = {2018}, doi = {10.5802/alco.15}, mrnumber = {3856526}, zbl = {06882343}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.15/} }
TY - JOUR AU - O’Carroll, Liam AU - Planas-Vilanova, Francesc TI - Minimal free resolutions of lattice ideals of digraphs JO - Algebraic Combinatorics PY - 2018 SP - 283 EP - 326 VL - 1 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.15/ DO - 10.5802/alco.15 LA - en ID - ALCO_2018__1_2_283_0 ER -
%0 Journal Article %A O’Carroll, Liam %A Planas-Vilanova, Francesc %T Minimal free resolutions of lattice ideals of digraphs %J Algebraic Combinatorics %D 2018 %P 283-326 %V 1 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.15/ %R 10.5802/alco.15 %G en %F ALCO_2018__1_2_283_0
O’Carroll, Liam; Planas-Vilanova, Francesc. Minimal free resolutions of lattice ideals of digraphs. Algebraic Combinatorics, Volume 1 (2018) no. 2, pp. 283-326. doi : 10.5802/alco.15. https://alco.centre-mersenne.org/articles/10.5802/alco.15/
[1] Chip-firing and Riemann–Roch Theory for Directed Graphs, 2010 (https://arxiv.org/abs/1012.0287) | Zbl
[2] Explicit deformation of lattice ideals via chip-firing games on directed graphs, J. Algebraic Combin., Volume 42 (2015) no. 4, pp. 1097-1110 | DOI | MR | Zbl
[3] Self-organized criticality, Phys. Rev. A (3), Volume 38 (1988) no. 1, pp. 364-374 | DOI | MR | Zbl
[4] Syzygies, finite length modules, and random curves, 2014 (https://arxiv.org/abs/1403.0581) | MR | Zbl
[5] Combinatorial matrix theory, Encyclopedia of Mathematics and its Applications, 39, Cambridge University Press, Cambridge, 1991, x+367 pages | DOI | MR | Zbl
[6] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993, xii+403 pages | MR | Zbl
[7] Polynomial ideals for sandpiles and their Gröbner bases, Theoret. Comput. Sci., Volume 276 (2002) no. 1-2, pp. 1-15 | DOI | MR | Zbl
[8] Arithmetical structures on graphs, 2017 (https://arxiv.org/abs/1604.02502) | Zbl
[9] Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997, xiv+536 pages | MR | Zbl
[10] Varieties, Gröbner Bases and Algebraic Curves (2011) (http://www.mathematik.uni-kl.de/~decker/Lehre/SS12/AlgebraicGeometry/material/BookDeckerSchreyer_v2.pdf)
[11] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages | MR | Zbl
[12] Refined algorithms to compute syzygies, J. Symbolic Comput., Volume 74 (2016), pp. 308-327 | DOI | MR | Zbl
[13] The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959, Vol. 1, x+374 pp. Vol. 2, ix+276 pages | MR | Zbl
[14] Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR | Zbl
[15] A Singular introduction to commutative algebra, Springer, Berlin, 2008, xx+689 pages (With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann) | MR | Zbl
[16] Efficiently Enumerating the Subsets of a Set (2000) (http://www.applied-math.org/subset.pdf)
[17] Minimal free resolutions of the -parking function ideal and the toppling ideal, Trans. Amer. Math. Soc., Volume 367 (2015) no. 4, pp. 2853-2874 | DOI | MR | Zbl
[18] Monomials, binomials and Riemann–Roch, J. Algebraic Combin., Volume 37 (2013) no. 4, pp. 737-756 | DOI | MR | Zbl
[19] Divisors on graphs, connected flags, and syzygies, Int. Math. Res. Not. (2014) no. 24, pp. 6839-6905 | DOI | MR | Zbl
[20] The primary components of positive critical binomial ideals, J. Algebra, Volume 373 (2013), pp. 392-413 | DOI | MR | Zbl
[21] Degree and algebraic properties of lattice and matrix ideals, SIAM J. Discrete Math., Volume 28 (2014) no. 1, pp. 394-427 | DOI | MR | Zbl
[22] Primer for the algebraic geometry of sandpiles, Tropical and non-Archimedean geometry (Contemp. Math.), Volume 605, Amer. Math. Soc., Providence, RI, 2013, pp. 211-256 | DOI | MR | Zbl
Cited by Sources: