Subword complexes are simplicial complexes introduced by Knutson and Miller to illustrate the combinatorics of Schubert polynomials and determinantal ideals. They proved that any subword complex is homeomorphic to a ball or a sphere and asked about their geometric realizations. We show that a family of subword complexes can be realized geometrically via regular triangulations of root polytopes. This implies that a family of -Grothendieck polynomials are special cases of reduced forms in the subdivision algebra of root polytopes. We can also write the volume and Ehrhart series of root polytopes in terms of -Grothendieck polynomials.
Accepted:
Published online:
DOI: 10.5802/alco.17
Keywords: subword complex, pipedream, triangulation, root polytope
Escobar, Laura 1; Mészáros, Karola 2
@article{ALCO_2018__1_3_395_0, author = {Escobar, Laura and M\'esz\'aros, Karola}, title = {Subword complexes via triangulations of root polytopes}, journal = {Algebraic Combinatorics}, pages = {395--414}, publisher = {MathOA foundation}, volume = {1}, number = {3}, year = {2018}, doi = {10.5802/alco.17}, mrnumber = {3856530}, zbl = {1393.52010}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.17/} }
TY - JOUR AU - Escobar, Laura AU - Mészáros, Karola TI - Subword complexes via triangulations of root polytopes JO - Algebraic Combinatorics PY - 2018 SP - 395 EP - 414 VL - 1 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.17/ DO - 10.5802/alco.17 LA - en ID - ALCO_2018__1_3_395_0 ER -
%0 Journal Article %A Escobar, Laura %A Mészáros, Karola %T Subword complexes via triangulations of root polytopes %J Algebraic Combinatorics %D 2018 %P 395-414 %V 1 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.17/ %R 10.5802/alco.17 %G en %F ALCO_2018__1_3_395_0
Escobar, Laura; Mészáros, Karola. Subword complexes via triangulations of root polytopes. Algebraic Combinatorics, Volume 1 (2018) no. 3, pp. 395-414. doi : 10.5802/alco.17. https://alco.centre-mersenne.org/articles/10.5802/alco.17/
[1] RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[2] Fan realizations of type subword complexes and multi-associahedra of rank 3, Discrete Comput. Geom., Volume 54 (2015) no. 1, pp. 195-231 | DOI | MR | Zbl
[3] On associahedra and related topics, Ph. D. Thesis, Freie Universität Berlin (Germany) (2012)
[4] Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Volume 39 (2014) no. 1, pp. 17-51 | DOI | MR | Zbl
[5] Brick manifolds and toric varieties of brick polytopes, Electron. J. Comb., Volume 23 (2016) no. 2, Paper no. P2.25, 18 pages | MR | Zbl
[6] Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics, DIMACS, 1994, pp. 183-189 | MR
[7] Combinatorics of hypergeometric functions associated with positive roots, The Arnold-Gelfand mathematical seminars, Birkhäuser, 1997, pp. 205-221 | DOI | MR | Zbl
[8] -unique reductions for Mészáros’s subdivision algebra (2017) (https://arxiv.org/abs/1704.00839) | Zbl
[9] On some quadratic algebras, Dunkl elements, Schubert, Grothendieck, Tutte and reduced polynomials (2014) (RIMS preprint)
[10] Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | DOI | MR | Zbl
[11] Gröbner geometry of Schubert polynomials, Ann. Math., Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR | Zbl
[12] Root polytopes, triangulations, and the subdivision algebra. I, Trans. Am. Math. Soc., Volume 363 (2011) no. 8, pp. 4359-4382 | DOI | MR | Zbl
[13] Root polytopes, triangulations, and the subdivision algebra, II, Trans. Am. Math. Soc., Volume 363 (2011) no. 11, pp. 6111-6141 | DOI | MR | Zbl
[14] -polynomials via reduced forms, Electron. J. Comb., Volume 22 (2015) no. 4, Paper no. P4.18, 17 pages | MR | Zbl
[15] Product formulas for volumes of flow polytopes, Proc. Am. Math. Soc., Volume 143 (2015) no. 3, pp. 937-954 | DOI | MR | Zbl
[16] -polynomials of reduction trees, SIAM J. Discrete Math., Volume 30 (2016) no. 2, pp. 736-762 | DOI | MR | Zbl
[17] Pipe dream complexes and triangulations of root polytopes belong together, SIAM J. Discrete Math., Volume 30 (2016) no. 1, pp. 100-111 | DOI | MR | Zbl
[18] Flow polytopes of signed graphs and the Kostant partition function, Int. Math. Res. Not. (2015) no. 3, pp. 830-871 | DOI | MR | Zbl
[19] From generalized permutahedra to Grothendieck polynomials via flow polytopes (2017) (https://arxiv.org/abs/1705.02418) | Zbl
[20] Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom., Volume 48 (2012) no. 1, pp. 142-191 | DOI | MR | Zbl
[21] The brick polytope of a sorting network, Eur. J. Comb., Volume 33 (2012) no. 4, pp. 632-662 | DOI | MR | Zbl
[22] Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials, Electron. J. Comb., Volume 19 (2012) no. 1, Paper no. P16, 18 pages | MR | Zbl
[23] Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, 1996, vi+164 pages | MR | Zbl
[24] A new perspective on -triangulations, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 6, pp. 1794-1800 | DOI | MR | Zbl
Cited by Sources: