Lorentzian polynomials, recently introduced by Brändén and Huh, generalize the notion of log-concavity of sequences to homogeneous polynomials whose supports are integer points of generalized permutahedra. Brändén and Huh show that normalizations of integer point transforms of generalized permutahedra are Lorentzian. Moreover, normalizations of certain projections of integer point transforms of generalized permutahedra with zero-one vertices are also Lorentzian. Taking this polytopal perspective further, we show that normalizations of certain projections of integer point transforms of flow polytopes are Lorentzian.
Revised:
Accepted:
Published online:
Keywords: Lorenztian polynomial, flow polytope, integer point transforms.
Mészáros, Karola 1; Setiabrata, Linus 2
@article{ALCO_2021__4_4_723_0, author = {M\'esz\'aros, Karola and Setiabrata, Linus}, title = {Lorentzian polynomials from polytope projections}, journal = {Algebraic Combinatorics}, pages = {723--739}, publisher = {MathOA foundation}, volume = {4}, number = {4}, year = {2021}, doi = {10.5802/alco.179}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.179/} }
TY - JOUR AU - Mészáros, Karola AU - Setiabrata, Linus TI - Lorentzian polynomials from polytope projections JO - Algebraic Combinatorics PY - 2021 SP - 723 EP - 739 VL - 4 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.179/ DO - 10.5802/alco.179 LA - en ID - ALCO_2021__4_4_723_0 ER -
%0 Journal Article %A Mészáros, Karola %A Setiabrata, Linus %T Lorentzian polynomials from polytope projections %J Algebraic Combinatorics %D 2021 %P 723-739 %V 4 %N 4 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.179/ %R 10.5802/alco.179 %G en %F ALCO_2021__4_4_723_0
Mészáros, Karola; Setiabrata, Linus. Lorentzian polynomials from polytope projections. Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 723-739. doi : 10.5802/alco.179. https://alco.centre-mersenne.org/articles/10.5802/alco.179/
[1] Simplicial generation of Chow rings of matroids (2019) (https://arxiv.org/abs/1905.07114) | Zbl
[2] Kostant partitions functions and flow polytopes, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 447-469 | DOI | MR | Zbl
[3] Lorentzian polynomials, Ann. of Math. (2), Volume 192 (2020) no. 3, pp. 821-891 | DOI | MR | Zbl
[4] Logarithmic concavity for morphisms of matroids, Adv. Math., Volume 367 (2020), Paper no. 107094, 19 pages | DOI | MR | Zbl
[5] Logarithmic concavity of Schur and related polynomials (2019) (https://arxiv.org/abs/1906.09633)
[6] Volumes and Ehrhart polynomials of flow polytopes, Math. Z., Volume 293 (2019) no. 3-4, pp. 1369-1401 | DOI | MR | Zbl
[7] From generalized permutahedra to Grothendieck polynomials via flow polytopes, Algebr. Comb., Volume 3 (2020) no. 5, pp. 1197-1229 | DOI | MR | Zbl
[8] The symmetric eigenvalue problem, Classics in Applied Mathematics, 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998, xxiv+398 pages | DOI | MR | Zbl
[9] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[10] Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algorithms and Combinatorics, 24, Springer-Verlag, Berlin, 2003, p. i-xxxiv and 649–1217 | MR | Zbl
Cited by Sources: