Lorentzian polynomials from polytope projections
Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 723-739.

Lorentzian polynomials, recently introduced by Brändén and Huh, generalize the notion of log-concavity of sequences to homogeneous polynomials whose supports are integer points of generalized permutahedra. Brändén and Huh show that normalizations of integer point transforms of generalized permutahedra are Lorentzian. Moreover, normalizations of certain projections of integer point transforms of generalized permutahedra with zero-one vertices are also Lorentzian. Taking this polytopal perspective further, we show that normalizations of certain projections of integer point transforms of flow polytopes are Lorentzian.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.179
Classification: 05E99, 05A20
Keywords: Lorenztian polynomial, flow polytope, integer point transforms.
Mészáros, Karola 1; Setiabrata, Linus 2

1 Department of Mathematics Cornell University Ithaca NY 14853, USA
2 Department of Mathematics University of Chicago Chicago IL 60637, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2021__4_4_723_0,
     author = {M\'esz\'aros, Karola and Setiabrata, Linus},
     title = {Lorentzian polynomials from polytope projections},
     journal = {Algebraic Combinatorics},
     pages = {723--739},
     publisher = {MathOA foundation},
     volume = {4},
     number = {4},
     year = {2021},
     doi = {10.5802/alco.179},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.179/}
}
TY  - JOUR
AU  - Mészáros, Karola
AU  - Setiabrata, Linus
TI  - Lorentzian polynomials from polytope projections
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 723
EP  - 739
VL  - 4
IS  - 4
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.179/
DO  - 10.5802/alco.179
LA  - en
ID  - ALCO_2021__4_4_723_0
ER  - 
%0 Journal Article
%A Mészáros, Karola
%A Setiabrata, Linus
%T Lorentzian polynomials from polytope projections
%J Algebraic Combinatorics
%D 2021
%P 723-739
%V 4
%N 4
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.179/
%R 10.5802/alco.179
%G en
%F ALCO_2021__4_4_723_0
Mészáros, Karola; Setiabrata, Linus. Lorentzian polynomials from polytope projections. Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 723-739. doi : 10.5802/alco.179. https://alco.centre-mersenne.org/articles/10.5802/alco.179/

[1] Backman, Spencer; Eur, Christopher; Simpson, Connor Simplicial generation of Chow rings of matroids (2019) (https://arxiv.org/abs/1905.07114) | Zbl

[2] Baldoni, Welleda; Vergne, Michèle Kostant partitions functions and flow polytopes, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 447-469 | DOI | MR | Zbl

[3] Brändén, Petter; Huh, June Lorentzian polynomials, Ann. of Math. (2), Volume 192 (2020) no. 3, pp. 821-891 | DOI | MR | Zbl

[4] Eur, Christopher; Huh, June Logarithmic concavity for morphisms of matroids, Adv. Math., Volume 367 (2020), Paper no. 107094, 19 pages | DOI | MR | Zbl

[5] Huh, June; Matherne, Jacob P.; Mészáros, Karola; St. Dizier, Avery Logarithmic concavity of Schur and related polynomials (2019) (https://arxiv.org/abs/1906.09633)

[6] Mészáros, Karola; Morales, Alejandro H. Volumes and Ehrhart polynomials of flow polytopes, Math. Z., Volume 293 (2019) no. 3-4, pp. 1369-1401 | DOI | MR | Zbl

[7] Mészáros, Karola; St. Dizier, Avery From generalized permutahedra to Grothendieck polynomials via flow polytopes, Algebr. Comb., Volume 3 (2020) no. 5, pp. 1197-1229 | DOI | MR | Zbl

[8] Parlett, Beresford N. The symmetric eigenvalue problem, Classics in Applied Mathematics, 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998, xxiv+398 pages | DOI | MR | Zbl

[9] Postnikov, Alexander Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl

[10] Schrijver, Alexander Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algorithms and Combinatorics, 24, Springer-Verlag, Berlin, 2003, p. i-xxxiv and 649–1217 | MR | Zbl

Cited by Sources: