Subpolygons in Conway–Coxeter frieze patterns
Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 741-755.

Friezes with coefficients are maps assigning numbers to the edges and diagonals of a regular polygon such that all Ptolemy relations for crossing diagonals are satisfied. Among these, the classic Conway–Coxeter friezes are the ones where all values are positive integers and all edges have value 1. Every subpolygon of a Conway–Coxeter frieze yields a frieze with coefficients over the positive integers. In this paper we give a complete arithmetic criterion for which friezes with coefficients appear as subpolygons of Conway–Coxeter friezes. This generalizes a result of our earlier paper with Peter Jørgensen from triangles to subpolygons of arbitrary size.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/alco.180
Classification: 05E15,  05E99,  13F60,  51M20
Keywords: Frieze pattern, tame frieze pattern, quiddity cycle, cluster algebra, polygon, triangulation.
@article{ALCO_2021__4_4_741_0,
     author = {Cuntz, Michael and Holm, Thorsten},
     title = {Subpolygons in {Conway{\textendash}Coxeter} frieze patterns},
     journal = {Algebraic Combinatorics},
     pages = {741--755},
     publisher = {MathOA foundation},
     volume = {4},
     number = {4},
     year = {2021},
     doi = {10.5802/alco.180},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.180/}
}
Cuntz, Michael; Holm, Thorsten. Subpolygons in Conway–Coxeter frieze patterns. Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 741-755. doi : 10.5802/alco.180. https://alco.centre-mersenne.org/articles/10.5802/alco.180/

[1] Conway, John H.; Coxeter, Harold S. M. Triangulated polygons and frieze patterns, Math. Gaz., Volume 57 (1973), p. 87-94 and 175–183 | Article | MR 461269 | Zbl 0288.05021

[2] Coxeter, Harold S. M. Frieze patterns, Acta Arith., Volume 18 (1971), pp. 297-310 | Article | MR 286771 | Zbl 0217.18101

[3] Coxeter, Harold S. M. Regular complex polytopes, Cambridge University Press, Cambridge, 1991, xiv+210 pages | Zbl 0732.51002

[4] Cuntz, Michael On Wild Frieze Patterns, Experimental Mathematics, Volume 26 (2017) no. 3, pp. 342-348 | Article | MR 3642111 | Zbl 1367.05207

[5] Cuntz, Michael; Holm, Thorsten; Jørgensen, Peter Frieze patterns with coefficients, Forum Math. Sigma, Volume 8 (2020), Paper no. e17, 36 pages | Article | MR 4080476 | Zbl 1442.13064

[6] Grobe, J. Frieze patterns with coefficients (2020) (Masters thesis)

[7] Morier-Genoud, Sophie Coxeter’s frieze patterns at the crossroads of algebra, geometry and combinatorics, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 895-938 | Article | MR 3431573 | Zbl 1330.05035

[8] Oda, Tadao Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pages (An introduction to the theory of toric varieties, Translated from the Japanese) | MR 922894 | Zbl 0628.52002

[9] Perron, Oskar Die Lehre von den Kettenbrüchen, Teubner Verlag, Leipzig, 1929 | Zbl 43.0283.04

[10] Propp, James The combinatorics of frieze patterns and Markoff numbers, Integers, Volume 20 (2020), Paper no. A12, 38 pages | MR 4067101 | Zbl 1435.05018