Orbits on k-subsets of 2-transitive Simple Lie-type Groups
Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 37-51.

For a finite rank one simple Lie-type group acting 2-transitively on a set Ω and k we derive formulae for the number of G-orbits on the set of all k-subsets of Ω.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/alco.195
Classification: 20D06,  20B20
Keywords: Number of Orbits, k-subsets, rank one Lie-type groups.
Bradley, Paul 1; Rowley, Peter 2

1 31 Songthrush Way Norton Canes Cannock Staffordshire WS11 9AH UK
2 Department of Mathematics University of Manchester Oxford Road Manchester M13 6PL UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_1_37_0,
     author = {Bradley, Paul and Rowley, Peter},
     title = {Orbits on $k$-subsets of $2$-transitive {Simple} {Lie-type} {Groups}},
     journal = {Algebraic Combinatorics},
     pages = {37--51},
     publisher = {MathOA foundation},
     volume = {5},
     number = {1},
     year = {2022},
     doi = {10.5802/alco.195},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.195/}
}
TY  - JOUR
AU  - Bradley, Paul
AU  - Rowley, Peter
TI  - Orbits on $k$-subsets of $2$-transitive Simple Lie-type Groups
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 37
EP  - 51
VL  - 5
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.195/
UR  - https://doi.org/10.5802/alco.195
DO  - 10.5802/alco.195
LA  - en
ID  - ALCO_2022__5_1_37_0
ER  - 
%0 Journal Article
%A Bradley, Paul
%A Rowley, Peter
%T Orbits on $k$-subsets of $2$-transitive Simple Lie-type Groups
%J Algebraic Combinatorics
%D 2022
%P 37-51
%V 5
%N 1
%I MathOA foundation
%U https://doi.org/10.5802/alco.195
%R 10.5802/alco.195
%G en
%F ALCO_2022__5_1_37_0
Bradley, Paul; Rowley, Peter. Orbits on $k$-subsets of $2$-transitive Simple Lie-type Groups. Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 37-51. doi : 10.5802/alco.195. https://alco.centre-mersenne.org/articles/10.5802/alco.195/

[1] Bradley, Paul Counting G-orbits on the induced action on k-subsets, Ph. D. Thesis, University of Manchester (2014)

[2] Bray, John N.; Holt, Derek F.; Roney-Dougal, Colva M. The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013, xiv+438 pages (With a foreword by Martin Liebeck) | DOI | MR | Zbl

[3] Bundy, David; Hart, Sarah The case of equality in the Livingstone–Wagner theorem, J. Algebraic Combin., Volume 29 (2009) no. 2, pp. 215-227 | DOI | MR | Zbl

[4] Cameron, Peter J. On an algebra related to orbit-counting, J. Group Theory, Volume 1 (1998) no. 2, pp. 173-179 | DOI | MR | Zbl

[5] Cameron, Peter J.; Maimani, Hamid R.; Omidi, Gholam R.; Tayfeh-Rezaie, Behruz 3-designs from PSL(2,q), Discrete Math., Volume 306 (2006) no. 23, pp. 3063-3073 | DOI | MR

[6] Cameron, Peter J.; Omidi, Gholam R.; Tayfeh-Rezaie, Behruz 3-designs from PGL(2,q), Electron. J. Combin., Volume 13 (2006) no. 1, Paper no. Research Paper 50, 11 pages | MR | Zbl

[7] Chen, Jing; Liu, Wei Jun 3-designs from PSL(2,q) with q1(mod4), Util. Math., Volume 88 (2012), pp. 211-222 | MR | Zbl

[8] Conway, John H.; Curtis, Robert T.; Norton, Simon P.; Parker, Richard A.; Wilson, Robert A. 𝔸𝕋𝕃𝔸𝕊 of finite groups. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985, xxxiv+252 pages | MR | Zbl

[9] Huppert, Bertram Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967, xii+793 pages | DOI | MR | Zbl

[10] Isaacs, I. Martin Character theory of finite groups, Pure and Applied Mathematics, 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976, xii+303 pages | MR

[11] Liu, WeiJun; Tang, JianXiong; Wu, YiXiang Some new 3-designs from PSL(2,q) with q1(mod4), Sci. China Math., Volume 55 (2012) no. 9, pp. 1901-1911 | DOI | MR | Zbl

[12] Livingstone, Donald; Wagner, Ascher Transitivity of finite permutation groups on unordered sets, Math. Z., Volume 90 (1965), pp. 393-403 | DOI | MR | Zbl

[13] Mitchell, Howard H. Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc., Volume 12 (1911) no. 2, pp. 207-242 | DOI | MR | Zbl

[14] Mnukhin, Valery B. Some relations for the lengths of orbits on k-sets and (k-1)-sets, Arch. Math. (Basel), Volume 69 (1997) no. 4, pp. 275-278 | DOI | MR | Zbl

[15] Mnukhin, Valery B.; Siemons, Johannes On the Livingstone–Wagner theorem, Electron. J. Combin., Volume 11 (2004) no. 1, Paper no. Research Paper 29, 8 pages | MR | Zbl

[16] Neumann, Peter M. A lemma that is not Burnside’s, Math. Sci., Volume 4 (1979) no. 2, pp. 133-141 | MR | Zbl

[17] Rosen, Kenneth H. Elementary number theory and its applications, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1988, xiv+466 pages | MR | Zbl

[18] Siemons, Johannes; Wagner, Ascher On finite permutation groups with the same orbits on unordered sets, Arch. Math. (Basel), Volume 45 (1985) no. 6, pp. 492-500 | DOI | MR | Zbl

[19] Siemons, Johannes; Wagner, Ascher On the relationship between the lengths of orbits on k-sets and (k+1)-sets, Abh. Math. Sem. Univ. Hamburg, Volume 58 (1988), pp. 267-274 | DOI | MR | Zbl

[20] Simpson, William A.; Frame, J. Sutherland The character tables for SL(3,q), SU(3,q 2 ), PSL(3,q), PSU(3,q 2 ), Canadian J. Math., Volume 25 (1973), pp. 486-494 | DOI | MR | Zbl

[21] Sloane, Neil J. A. Jacobsthal sequence (or Jacobsthal numbers) (2013) (https://oeis.org/A001045)

[22] Sloane, Neil J. A. Number of vertices in Sierpinski triangle of order n (2013) (https://oeis.org/A067771)

[23] Suzuki, Michio On a class of doubly transitive groups, Ann. of Math. (2), Volume 75 (1962), pp. 105-145 | DOI | MR | Zbl

Cited by Sources: