For a finite rank one simple Lie-type group acting -transitively on a set and we derive formulae for the number of -orbits on the set of all -subsets of .
Accepted:
Revised after acceptance:
Published online:
Keywords: Number of Orbits, $k$-subsets, rank one Lie-type groups.
Bradley, Paul 1; Rowley, Peter 2
@article{ALCO_2022__5_1_37_0, author = {Bradley, Paul and Rowley, Peter}, title = {Orbits on $k$-subsets of $2$-transitive {Simple} {Lie-type} {Groups}}, journal = {Algebraic Combinatorics}, pages = {37--51}, publisher = {MathOA foundation}, volume = {5}, number = {1}, year = {2022}, doi = {10.5802/alco.195}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.195/} }
TY - JOUR AU - Bradley, Paul AU - Rowley, Peter TI - Orbits on $k$-subsets of $2$-transitive Simple Lie-type Groups JO - Algebraic Combinatorics PY - 2022 SP - 37 EP - 51 VL - 5 IS - 1 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.195/ DO - 10.5802/alco.195 LA - en ID - ALCO_2022__5_1_37_0 ER -
%0 Journal Article %A Bradley, Paul %A Rowley, Peter %T Orbits on $k$-subsets of $2$-transitive Simple Lie-type Groups %J Algebraic Combinatorics %D 2022 %P 37-51 %V 5 %N 1 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.195/ %R 10.5802/alco.195 %G en %F ALCO_2022__5_1_37_0
Bradley, Paul; Rowley, Peter. Orbits on $k$-subsets of $2$-transitive Simple Lie-type Groups. Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 37-51. doi : 10.5802/alco.195. https://alco.centre-mersenne.org/articles/10.5802/alco.195/
[1] Counting -orbits on the induced action on -subsets, Ph. D. Thesis, University of Manchester (2014)
[2] The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013, xiv+438 pages (With a foreword by Martin Liebeck) | DOI | MR | Zbl
[3] The case of equality in the Livingstone–Wagner theorem, J. Algebraic Combin., Volume 29 (2009) no. 2, pp. 215-227 | DOI | MR | Zbl
[4] On an algebra related to orbit-counting, J. Group Theory, Volume 1 (1998) no. 2, pp. 173-179 | DOI | MR | Zbl
[5] 3-designs from , Discrete Math., Volume 306 (2006) no. 23, pp. 3063-3073 | DOI | MR
[6] 3-designs from , Electron. J. Combin., Volume 13 (2006) no. 1, Paper no. Research Paper 50, 11 pages | MR | Zbl
[7] 3-designs from with , Util. Math., Volume 88 (2012), pp. 211-222 | MR | Zbl
[8] of finite groups. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985, xxxiv+252 pages | MR | Zbl
[9] Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967, xii+793 pages | DOI | MR | Zbl
[10] Character theory of finite groups, Pure and Applied Mathematics, 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976, xii+303 pages | MR
[11] Some new 3-designs from with , Sci. China Math., Volume 55 (2012) no. 9, pp. 1901-1911 | DOI | MR | Zbl
[12] Transitivity of finite permutation groups on unordered sets, Math. Z., Volume 90 (1965), pp. 393-403 | DOI | MR | Zbl
[13] Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc., Volume 12 (1911) no. 2, pp. 207-242 | DOI | MR | Zbl
[14] Some relations for the lengths of orbits on -sets and -sets, Arch. Math. (Basel), Volume 69 (1997) no. 4, pp. 275-278 | DOI | MR | Zbl
[15] On the Livingstone–Wagner theorem, Electron. J. Combin., Volume 11 (2004) no. 1, Paper no. Research Paper 29, 8 pages | MR | Zbl
[16] A lemma that is not Burnside’s, Math. Sci., Volume 4 (1979) no. 2, pp. 133-141 | MR | Zbl
[17] Elementary number theory and its applications, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1988, xiv+466 pages | MR | Zbl
[18] On finite permutation groups with the same orbits on unordered sets, Arch. Math. (Basel), Volume 45 (1985) no. 6, pp. 492-500 | DOI | MR | Zbl
[19] On the relationship between the lengths of orbits on -sets and -sets, Abh. Math. Sem. Univ. Hamburg, Volume 58 (1988), pp. 267-274 | DOI | MR | Zbl
[20] The character tables for , , , , Canadian J. Math., Volume 25 (1973), pp. 486-494 | DOI | MR | Zbl
[21] Jacobsthal sequence (or Jacobsthal numbers) (2013) (https://oeis.org/A001045)
[22] Number of vertices in Sierpinski triangle of order (2013) (https://oeis.org/A067771)
[23] On a class of doubly transitive groups, Ann. of Math. (2), Volume 75 (1962), pp. 105-145 | DOI | MR | Zbl
Cited by Sources: