On residually thin and nilpotent table algebras, fusion rings, and association schemes
Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 21-36.

Residually thin and nilpotent table algebras, which are abstractions of fusion rings and adjacency algebras of association schemes, are defined and investigated. A formula for the degrees of basis elements in residually thin table algebras is established, which yields an integrality result of Gelaki and Nikshych as an immediate corollary; and it is shown that this formula holds only for such algebras. These theorems for table algebras specialize to new results for association schemes. Bi-anchored thin-central (BTC) chains of closed subsets are used to define nilpotence, in the manner of Hanaki for association schemes. Lower BTC-chains are defined as an abstraction of the lower central series of a finite group. A partial characterization is proved; and a family of examples illustrates that unlike the case for finite groups, there is not necessarily a unique lower BTC-chain for a nilpotent table algebra or association scheme.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.194
Classification: 16P10,  16P70,  16W10,  20D15,  05E30
Keywords: Table algebra, fusion ring, association scheme, residually thin, nilpotent, thin central chain.
Blau, Harvey I. 1

1 Department of Mathematical Sciences Northern Illinois University DeKalb, IL 60115, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_1_21_0,
     author = {Blau, Harvey I.},
     title = {On residually thin and nilpotent table algebras, fusion rings, and association schemes},
     journal = {Algebraic Combinatorics},
     pages = {21--36},
     publisher = {MathOA foundation},
     volume = {5},
     number = {1},
     year = {2022},
     doi = {10.5802/alco.194},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.194/}
}
TY  - JOUR
AU  - Blau, Harvey I.
TI  - On residually thin and nilpotent table algebras, fusion rings, and association schemes
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 21
EP  - 36
VL  - 5
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.194/
UR  - https://doi.org/10.5802/alco.194
DO  - 10.5802/alco.194
LA  - en
ID  - ALCO_2022__5_1_21_0
ER  - 
%0 Journal Article
%A Blau, Harvey I.
%T On residually thin and nilpotent table algebras, fusion rings, and association schemes
%J Algebraic Combinatorics
%D 2022
%P 21-36
%V 5
%N 1
%I MathOA foundation
%U https://doi.org/10.5802/alco.194
%R 10.5802/alco.194
%G en
%F ALCO_2022__5_1_21_0
Blau, Harvey I. On residually thin and nilpotent table algebras, fusion rings, and association schemes. Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 21-36. doi : 10.5802/alco.194. https://alco.centre-mersenne.org/articles/10.5802/alco.194/

[1] Arad, Zvi; Fisman, Elsa; Muzychuk, Mikhail Generalized table algebras, Israel J. Math., Volume 114 (1999), pp. 29-60 | DOI | MR | Zbl

[2] Blau, Harvey I. Quotient structures in C-algebras, J. Algebra, Volume 177 (1995) no. 1, pp. 297-337 | DOI | MR | Zbl

[3] Blau, Harvey I. Table algebras, European J. Combin., Volume 30 (2009) no. 6, pp. 1426-1455 | DOI | MR | Zbl

[4] Blau, Harvey I. Fusion rings with few degrees, J. Algebra, Volume 396 (2013), pp. 220-271 | DOI | MR | Zbl

[5] Blau, Harvey I.; Chen, Shengan Normal series and character values in p-standard table algebras, Comm. Algebra, Volume 45 (2017) no. 11, pp. 4646-4655 | DOI | MR | Zbl

[6] Blau, Harvey I.; Zieschang, Paul-Hermann Sylow theory for table algebras, fusion rule algebras, and hypergroups, J. Algebra, Volume 273 (2004) no. 2, pp. 551-570 | DOI | MR | Zbl

[7] French, Christopher; Zieschang, Paul-Hermann On residually thin hypergroups, J. Algebra, Volume 551 (2020), pp. 93-118 | DOI | MR | Zbl

[8] Gelaki, Shlomo; Nikshych, Dmitri Nilpotent fusion categories, Adv. Math., Volume 217 (2008) no. 3, pp. 1053-1071 | DOI | MR | Zbl

[9] Hanaki, Akihide Nilpotent schemes and group-like schemes, J. Combin. Theory Ser. A, Volume 115 (2008) no. 2, pp. 226-236 | DOI | MR | Zbl

[10] Hanaki, Akihide; Miyamoto, Izumi Classification of association schemes with small vertices (2021) (http://math.shinshu-u.ac.jp/~hanaki/as/)

[11] Hanaki, Akihide; Shimabukuro, Osamu Indecomposable decompositions of modular standard modules for two families of association schemes, J. Algebraic Combin., Volume 46 (2017) no. 2, pp. 445-453 | DOI | MR | Zbl

[12] Muzychuk, Mikhail A wedge product of association schemes, European J. Combin., Volume 30 (2009) no. 3, pp. 705-715 | DOI | MR | Zbl

[13] Zieschang, Paul-Hermann An algebraic approach to association schemes, Lecture Notes in Mathematics, 1628, Springer-Verlag, Berlin, 1996, xii+189 pages | DOI | MR | Zbl

[14] Zieschang, Paul-Hermann Theory of association schemes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, xvi+283 pages | MR

Cited by Sources: