On the action of the toggle group of the Dynkin diagram of type A
Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 149-161.

In this article, we consider involutions, called togglings, on the set of independent sets of the Dynkin diagram of type A, or a path graph. We are interested in the action of the subgroup of the symmetric group of the set of independent sets generated by togglings. We show that the subgroup coincides with the symmetric group.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/alco.204
Classification: 20B20,  05E16,  05C69
Keywords: Coxeter groups; Togglings of independent sets; Fibonacci sequence; Symmetric group; Transitive actions.
Numata, Yasuhide 1; Yamanouchi, Yuiko 2

1 Department of Mathematics Shinshu University Matsumoto Japan
2 Graduate School of Science and Technology Shinshu University Matsumoto Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_1_149_0,
     author = {Numata, Yasuhide and Yamanouchi, Yuiko},
     title = {On the action of the toggle group of the {Dynkin} diagram of type $A$},
     journal = {Algebraic Combinatorics},
     pages = {149--161},
     publisher = {MathOA foundation},
     volume = {5},
     number = {1},
     year = {2022},
     doi = {10.5802/alco.204},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.204/}
}
TY  - JOUR
AU  - Numata, Yasuhide
AU  - Yamanouchi, Yuiko
TI  - On the action of the toggle group of the Dynkin diagram of type $A$
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 149
EP  - 161
VL  - 5
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.204/
UR  - https://doi.org/10.5802/alco.204
DO  - 10.5802/alco.204
LA  - en
ID  - ALCO_2022__5_1_149_0
ER  - 
%0 Journal Article
%A Numata, Yasuhide
%A Yamanouchi, Yuiko
%T On the action of the toggle group of the Dynkin diagram of type $A$
%J Algebraic Combinatorics
%D 2022
%P 149-161
%V 5
%N 1
%I MathOA foundation
%U https://doi.org/10.5802/alco.204
%R 10.5802/alco.204
%G en
%F ALCO_2022__5_1_149_0
Numata, Yasuhide; Yamanouchi, Yuiko. On the action of the toggle group of the Dynkin diagram of type $A$. Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 149-161. doi : 10.5802/alco.204. https://alco.centre-mersenne.org/articles/10.5802/alco.204/

[1] Cameron, Peter J.; Fon-Der-Flaass, Dmitri G. Orbits of antichains revisited, European J. Combin., Volume 16 (1995) no. 6, pp. 545-554 | DOI | MR | Zbl

[2] Joseph, Michael Antichain toggling and rowmotion, Electron. J. Combin., Volume 26 (2019) no. 1, Paper no. 1.29, 43 pages | MR | Zbl

[3] Joseph, Michael; Roby, Tom Toggling independent sets of a path graph, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.18, 31 pages | MR | Zbl

[4] Joseph, Michael; Roby, Tom Birational and noncommutative lifts of antichain toggling and rowmotion, Algebr. Comb., Volume 3 (2020) no. 4, pp. 955-984 | DOI | MR | Zbl

[5] Macauley, Matthew; McCammond, Jon; Mortveit, Henning S. Dynamics groups of asynchronous cellular automata, J. Algebraic Combin., Volume 33 (2011) no. 1, pp. 11-35 | DOI | MR | Zbl

[6] Salo, Ville Universal gates with wires in a row, J. Algebraic Combin. (2021) | DOI

[7] Striker, Jessica The toggle group, homomesy, and the Razumov–Stroganov correspondence, Electron. J. Combin., Volume 22 (2015) no. 2, Paper no. 2.57, 17 pages | MR | Zbl

[8] Striker, Jessica; Williams, Nathan Promotion and rowmotion, European J. Combin., Volume 33 (2012) no. 8, pp. 1919-1942 | DOI | MR | Zbl

Cited by Sources: