Skew morphisms, which generalise automorphisms for groups, provide a fundamental tool for the study of regular Cayley maps and, more generally, for finite groups with a complementary factorisation , where is cyclic and core-free in . In this paper, we classify all examples in which is monolithic (meaning that it has a unique minimal normal subgroup, and that subgroup is not abelian) and core-free in . As a consequence, we obtain a classification of all proper skew morphisms of finite non-abelian simple groups.
Revised:
Accepted:
Published online:
Keywords: skew morphisms, regular Cayley maps, group factorisation
Bachratý, Martin 1; Conder, Marston 2; Verret, Gabriel 2
@article{ALCO_2022__5_5_785_0, author = {Bachrat\'y, Martin and Conder, Marston and Verret, Gabriel}, title = {Skew product groups for monolithic groups}, journal = {Algebraic Combinatorics}, pages = {785--802}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {5}, year = {2022}, doi = {10.5802/alco.206}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.206/} }
TY - JOUR AU - Bachratý, Martin AU - Conder, Marston AU - Verret, Gabriel TI - Skew product groups for monolithic groups JO - Algebraic Combinatorics PY - 2022 SP - 785 EP - 802 VL - 5 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.206/ DO - 10.5802/alco.206 LA - en ID - ALCO_2022__5_5_785_0 ER -
%0 Journal Article %A Bachratý, Martin %A Conder, Marston %A Verret, Gabriel %T Skew product groups for monolithic groups %J Algebraic Combinatorics %D 2022 %P 785-802 %V 5 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.206/ %R 10.5802/alco.206 %G en %F ALCO_2022__5_5_785_0
Bachratý, Martin; Conder, Marston; Verret, Gabriel. Skew product groups for monolithic groups. Algebraic Combinatorics, Volume 5 (2022) no. 5, pp. 785-802. doi : 10.5802/alco.206. https://alco.centre-mersenne.org/articles/10.5802/alco.206/
[1] List of skew-morphisms of cyclic groups up to order 161 (2020)
[2] Powers of skew-morphisms, Symmetries in graphs, maps, and polytopes (Springer Proc. Math. Stat.), Volume 159, Springer, 2016, pp. 1-25 | DOI | MR | Zbl
[3] The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[4] Skew-morphisms of nonabelian characteristically simple groups, J. Combin. Theory Ser. A, Volume 185 (2022), Paper no. 105539, 17 pages | DOI | MR | Zbl
[5] Cyclic complements and skew morphisms of groups, J. Algebra, Volume 453 (2016), pp. 68-100 | DOI | MR | Zbl
[6] Regular Cayley maps for cyclic groups, Trans. Amer. Math. Soc., Volume 366 (2014) no. 7, pp. 3585-3609 | DOI | MR | Zbl
[7] The Noether number for the groups with a cyclic subgroup of index two, J. Algebra, Volume 399 (2014), pp. 546-560 | DOI | MR | Zbl
[8] Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996, xii+346 pages | DOI | MR
[9] Über das Produkt von zwei abelschen Gruppen, Math. Z., Volume 62 (1955), pp. 400-401 | DOI | MR | Zbl
[10] Skew-morphisms of regular Cayley maps, Discrete Math., Volume 244 (2002) no. 1-3, pp. 167-179 Algebraic and topological methods in graph theory (Lake Bled, 1999) | DOI | MR | Zbl
[11] Cyclic regular subgroups of primitive permutation groups, J. Group Theory, Volume 5 (2002) no. 4, pp. 403-407 | DOI | MR | Zbl
[12] A bound on the order of the outer automorphism group of a finite simple group of given order https://stefan-kohl.github.io/preprints/outbound.pdf
[13] Classification of reflexible Cayley maps for dihedral groups, J. Combin. Theory Ser. B, Volume 127 (2017), pp. 187-204 | DOI | MR | Zbl
[14] Regular Cayley maps for dihedral groups, J. Combin. Theory Ser. B, Volume 148 (2021), pp. 84-124 | DOI | MR | Zbl
[15] Decomposition of skew-morphisms of cyclic groups, Ars Math. Contemp., Volume 4 (2011) no. 2, pp. 329-349 | DOI | MR | Zbl
[16] Skew-morphisms of cyclic -groups, J. Group Theory, Volume 20 (2017) no. 6, pp. 1135-1154 | DOI | MR | Zbl
[17] On finite permutation groups with a transitive cyclic subgroup, J. Algebra, Volume 349 (2012), pp. 117-127 | DOI | MR | Zbl
[18] The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., Volume 86 (1990) no. 432, p. iv+151 | DOI | MR
[19] On the order of transitive permutation groups with cyclic point-stabilizer, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 9 (1998) no. 4, p. 241-243 (1999) | MR | Zbl
[20] Fermat’s theorem for matrices, Duke Math. J., Volume 15 (1948), pp. 823-826 | MR | Zbl
[21] A course in the theory of groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996, xviii+499 pages | DOI | MR
[22] On the skew-morphisms of dihedral groups, J. Group Theory, Volume 19 (2016) no. 6, pp. 993-1016 | DOI | MR | Zbl
Cited by Sources: