Skew product groups for monolithic groups
Algebraic Combinatorics, Volume 5 (2022) no. 5, pp. 785-802.

Skew morphisms, which generalise automorphisms for groups, provide a fundamental tool for the study of regular Cayley maps and, more generally, for finite groups with a complementary factorisation G=BY, where Y is cyclic and core-free in G. In this paper, we classify all examples in which B is monolithic (meaning that it has a unique minimal normal subgroup, and that subgroup is not abelian) and core-free in G. As a consequence, we obtain a classification of all proper skew morphisms of finite non-abelian simple groups.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.206
Classification: 20D99,  05E18,  05C25
Keywords: skew morphisms, regular Cayley maps, group factorisation
Bachratý, Martin 1; Conder, Marston 2; Verret, Gabriel 2

1 Mathematics Department Slovak University of Technology 81005 Bratislava Slovakia
2 Mathematics Department University of Auckland PB 92019 Auckland New Zealand
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_5_785_0,
     author = {Bachrat\'y, Martin and Conder, Marston and Verret, Gabriel},
     title = {Skew product groups for monolithic groups},
     journal = {Algebraic Combinatorics},
     pages = {785--802},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {5},
     year = {2022},
     doi = {10.5802/alco.206},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.206/}
}
TY  - JOUR
AU  - Bachratý, Martin
AU  - Conder, Marston
AU  - Verret, Gabriel
TI  - Skew product groups for monolithic groups
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 785
EP  - 802
VL  - 5
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.206/
UR  - https://doi.org/10.5802/alco.206
DO  - 10.5802/alco.206
LA  - en
ID  - ALCO_2022__5_5_785_0
ER  - 
%0 Journal Article
%A Bachratý, Martin
%A Conder, Marston
%A Verret, Gabriel
%T Skew product groups for monolithic groups
%J Algebraic Combinatorics
%D 2022
%P 785-802
%V 5
%N 5
%I The Combinatorics Consortium
%U https://doi.org/10.5802/alco.206
%R 10.5802/alco.206
%G en
%F ALCO_2022__5_5_785_0
Bachratý, Martin; Conder, Marston; Verret, Gabriel. Skew product groups for monolithic groups. Algebraic Combinatorics, Volume 5 (2022) no. 5, pp. 785-802. doi : 10.5802/alco.206. https://alco.centre-mersenne.org/articles/10.5802/alco.206/

[1] Bachratý, Martin List of skew-morphisms of cyclic groups up to order 161 (2020)

[2] Bachratý, Martin; Jajcay, Robert Powers of skew-morphisms, Symmetries in graphs, maps, and polytopes (Springer Proc. Math. Stat.), Volume 159, Springer, 2016, pp. 1-25 | DOI | MR | Zbl

[3] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl

[4] Chen, Jiyong; Du, Shaofei; Li, Cai Heng Skew-morphisms of nonabelian characteristically simple groups, J. Combin. Theory Ser. A, Volume 185 (2022), Paper no. 105539, 17 pages | DOI | MR | Zbl

[5] Conder, Marston D. E.; Jajcay, Robert; Tucker, Thomas W. Cyclic complements and skew morphisms of groups, J. Algebra, Volume 453 (2016), pp. 68-100 | DOI | MR | Zbl

[6] Conder, Marston D. E.; Tucker, Thomas W. Regular Cayley maps for cyclic groups, Trans. Amer. Math. Soc., Volume 366 (2014) no. 7, pp. 3585-3609 | DOI | MR | Zbl

[7] Cziszter, Kálmán; Domokos, Mátyás The Noether number for the groups with a cyclic subgroup of index two, J. Algebra, Volume 399 (2014), pp. 546-560 | DOI | MR | Zbl

[8] Dixon, John D.; Mortimer, Brian Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996, xii+346 pages | DOI | MR

[9] Itô, Noboru Über das Produkt von zwei abelschen Gruppen, Math. Z., Volume 62 (1955), pp. 400-401 | DOI | MR | Zbl

[10] Jajcay, Robert; Širáň, Jozef Skew-morphisms of regular Cayley maps, Discrete Math., Volume 244 (2002) no. 1-3, pp. 167-179 Algebraic and topological methods in graph theory (Lake Bled, 1999) | DOI | MR | Zbl

[11] Jones, Gareth A. Cyclic regular subgroups of primitive permutation groups, J. Group Theory, Volume 5 (2002) no. 4, pp. 403-407 | DOI | MR | Zbl

[12] Kohl, Stefan A bound on the order of the outer automorphism group of a finite simple group of given order https://stefan-kohl.github.io/preprints/outbound.pdf

[13] Kovács, István; Kwon, Young Soo Classification of reflexible Cayley maps for dihedral groups, J. Combin. Theory Ser. B, Volume 127 (2017), pp. 187-204 | DOI | MR | Zbl

[14] Kovács, István; Kwon, Young Soo Regular Cayley maps for dihedral groups, J. Combin. Theory Ser. B, Volume 148 (2021), pp. 84-124 | DOI | MR | Zbl

[15] Kovács, István; Nedela, Roman Decomposition of skew-morphisms of cyclic groups, Ars Math. Contemp., Volume 4 (2011) no. 2, pp. 329-349 | DOI | MR | Zbl

[16] Kovács, István; Nedela, Roman Skew-morphisms of cyclic p-groups, J. Group Theory, Volume 20 (2017) no. 6, pp. 1135-1154 | DOI | MR | Zbl

[17] Li, Cai Heng; Praeger, Cheryl E. On finite permutation groups with a transitive cyclic subgroup, J. Algebra, Volume 349 (2012), pp. 117-127 | DOI | MR | Zbl

[18] Liebeck, Martin W.; Praeger, Cheryl E.; Saxl, Jan The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., Volume 86 (1990) no. 432, p. iv+151 | DOI | MR

[19] Lucchini, Andrea On the order of transitive permutation groups with cyclic point-stabilizer, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 9 (1998) no. 4, p. 241-243 (1999) | MR | Zbl

[20] Niven, Ivan Fermat’s theorem for matrices, Duke Math. J., Volume 15 (1948), pp. 823-826 | MR | Zbl

[21] Robinson, Derek J. S. A course in the theory of groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996, xviii+499 pages | DOI | MR

[22] Zhang, Jun-Yang; Du, Shaofei On the skew-morphisms of dihedral groups, J. Group Theory, Volume 19 (2016) no. 6, pp. 993-1016 | DOI | MR | Zbl

Cited by Sources: