In this article, we provide a general study of what we call twisted quadrics and consider flocks of the variant of -conics and -hyperbolic quadrics. We extend the notion of the Klein quadric to what we call an -Klein quadric. Blended kernel translation planes are defined and analysed when considering -conical flocks and -twisted hyperbolic flocks.
The Thas–Walker constructions of conical flocks and flocks of hyperbolic quadrics are extended to their -analogues. Using the idea that any derivable net can be embedded into a -dimensional projective space over a skewfield, allows us to formulate what might be called a projective version of work previously given in an algebraic framework. The theory of deficiency one flocks is extended to both -conical flocks and -twisted hyperbolic flocks. -planes are used to construct two infinite classes of finite -hyperbolic flocks.
Revised:
Accepted:
Published online:
Keywords: twisted hyperbolic flocks, Klein quadric, j-planes, quasifibrations, T-copies, quaternion division rings
Johnson, Norman L. 1
@article{ALCO_2022__5_5_803_0, author = {Johnson, Norman L.}, title = {Twisted quadrics and $\alpha $-flocks}, journal = {Algebraic Combinatorics}, pages = {803--826}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {5}, year = {2022}, doi = {10.5802/alco.216}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.216/} }
TY - JOUR AU - Johnson, Norman L. TI - Twisted quadrics and $\alpha $-flocks JO - Algebraic Combinatorics PY - 2022 SP - 803 EP - 826 VL - 5 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.216/ DO - 10.5802/alco.216 LA - en ID - ALCO_2022__5_5_803_0 ER -
Johnson, Norman L. Twisted quadrics and $\alpha $-flocks. Algebraic Combinatorics, Volume 5 (2022) no. 5, pp. 803-826. doi : 10.5802/alco.216. https://alco.centre-mersenne.org/articles/10.5802/alco.216/
[1] Some new examples of flocks of , Geom. Dedicata, Volume 27 (1988) no. 2, pp. 213-218 | DOI | MR | Zbl
[2] On the flocks of , Geom. Dedicata, Volume 29 (1989) no. 2, pp. 177-183 | DOI | MR | Zbl
[3] A nonlinear flock in the Minkowski plane of order , Volume 58, 1987, pp. 75-81 Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, Fla., 1987) | MR | Zbl
[4] On the definition of Baer subplanes of infinite planes, J. Geom., Volume 3 (1973), pp. 87-92 | DOI | MR | Zbl
[5] Foundations of translation planes, Monographs and Textbooks in Pure and Applied Mathematics, 243, Marcel Dekker, Inc., New York, 2001, xvi+542 pages | DOI | MR
[6] -flokki and partial -flokki, Innov. Incidence Geom., Volume 15 (2017), pp. 5-29 | DOI | MR | Zbl
[7] The translation planes of order twenty-five, J. Combin. Theory Ser. A, Volume 59 (1992) no. 2, pp. 193-217 | DOI | MR | Zbl
[8] On some extension of -spread sets, Osaka J. Math., Volume 24 (1987) no. 1, pp. 123-137 | MR | Zbl
[9] Notes on the derived Walker planes, J. Combin. Theory Ser. A, Volume 42 (1986) no. 2, pp. 320-323 | DOI | MR | Zbl
[10] Conical, ruled and deficiency one translation planes, Bull. Belg. Math. Soc. Simon Stevin, Volume 6 (1999) no. 2, pp. 187-218 | MR | Zbl
[11] Translation planes admitting Baer groups and partial flocks of quadric sets, Simon Stevin, Volume 63 (1989) no. 2, pp. 167-188 | MR | Zbl
[12] -planes, J. Combin. Theory Ser. A, Volume 56 (1991) no. 2, pp. 271-284 | DOI | MR | Zbl
[13] A maximal partial flock of deficiency one of the hyperbolic quadric in , Simon Stevin, Volume 64 (1990) no. 2, pp. 169-177 | MR | Zbl
[14] Flocks of hyperbolic quadrics and translation planes admitting affine homologies, J. Geom., Volume 34 (1989) no. 1-2, pp. 50-73 | DOI | MR | Zbl
[15] Derivable nets may be embedded in nonderivable planes, Groups and geometries (Siena, 1996) (Trends Math.), Birkhäuser, Basel, 1998, pp. 123-144 | DOI | MR | Zbl
[16] Subplane covered nets, Monographs and Textbooks in Pure and Applied Mathematics, 222, Marcel Dekker, Inc., New York, 2000, xii+362 pages | DOI | MR
[17] Combinatorics of spreads and parallelisms, Pure and Applied Mathematics (Boca Raton), 295, CRC Press, Boca Raton, FL, 2010, xxii+651 pages | DOI | MR
[18] Galois Chains of Quasifibrations, 2021
[19] Monomial Flocks and Twisted Hyperbolic Quadrics, 2021
[20] Twisted hyperbolic flocks, Innov. Incidence Geom., Volume 19 (2021–2022) no. 1, pp. 1-23 | DOI | MR | Zbl
[21] Classifying derivable nets, Innov. Incidence Geom., Volume 19 (2022) no. 2, pp. 59-94 | DOI | MR | Zbl
[22] Transitive partial hyperbolic flocks of deficiency one, Note Mat., Volume 29 (2009) no. 1, pp. 89-98 | MR | Zbl
[23] Rational Function Field Extensions of Skewfields, 2021
[24] Lifting skewfields, J. Geom., Volume 113 (2022) no. 1, p. Paper No. 5, 24 | DOI | MR | Zbl
[25] Handbook of finite translation planes, Pure and Applied Mathematics (Boca Raton), 289, Chapman & Hall/CRC, Boca Raton, FL, 2007, xxii+861 pages | DOI | MR
[26] Maximal partial spreads and transversal-free translation nets, J. Combin. Theory Ser. A, Volume 62 (1993) no. 1, pp. 66-92 | DOI | MR | Zbl
[27] Flokki planes and cubic polynomials, Note Mat., Volume 29 (2009) no. suppl. 1, pp. 211-221 | MR | Zbl
[28] The translation planes of order , Des. Codes Cryptogr., Volume 5 (1995) no. 1, pp. 57-72 | DOI | MR | Zbl
[29] Conical flocks, partial flocks, derivation, and generalized quadrangles, Geom. Dedicata, Volume 38 (1991) no. 2, pp. 229-243 | DOI | MR | Zbl
[30] An orderly algorithm and some applications in finite geometry, Discrete Math., Volume 185 (1998) no. 1-3, pp. 105-115 | DOI | MR | Zbl
[31] Partial flocks of the quadratic cone, J. Combin. Theory Ser. A, Volume 113 (2006) no. 4, pp. 698-702 | DOI | MR | Zbl
[32] Flocks, maximal exterior sets, and inversive planes, Finite geometries and combinatorial designs (Lincoln, NE, 1987) (Contemp. Math.), Volume 111, Amer. Math. Soc., Providence, RI, 1990, pp. 187-218 | DOI | MR | Zbl
[33] Flocks of non-singular ruled quadrics in , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), Volume 59 (1975) no. 1-2, p. 83-85 (1976) | MR | Zbl
Cited by Sources: