We study the representation theory of the uniform block permutation algebra in the context of the representation theory of factorizable inverse monoids. The uniform block permutation algebra is a subalgebra of the partition algebra and is also known as the party algebra. We compute its characters and provide a Frobenius characteristic map to symmetric functions. This reveals connections of the characters of the uniform block permutation algebra and plethysms of Schur functions.
Revised:
Accepted:
Published online:
Keywords: partition algebra, plethysm, representation theory of semigroups, symmetric functions
Orellana, Rosa 1; Saliola, Franco 2; Schilling, Anne 3; Zabrocki, Mike 4
@article{ALCO_2022__5_5_1165_0, author = {Orellana, Rosa and Saliola, Franco and Schilling, Anne and Zabrocki, Mike}, title = {Plethysm and the algebra of uniform block permutations}, journal = {Algebraic Combinatorics}, pages = {1165--1203}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {5}, year = {2022}, doi = {10.5802/alco.243}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.243/} }
TY - JOUR AU - Orellana, Rosa AU - Saliola, Franco AU - Schilling, Anne AU - Zabrocki, Mike TI - Plethysm and the algebra of uniform block permutations JO - Algebraic Combinatorics PY - 2022 SP - 1165 EP - 1203 VL - 5 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.243/ DO - 10.5802/alco.243 LA - en ID - ALCO_2022__5_5_1165_0 ER -
%0 Journal Article %A Orellana, Rosa %A Saliola, Franco %A Schilling, Anne %A Zabrocki, Mike %T Plethysm and the algebra of uniform block permutations %J Algebraic Combinatorics %D 2022 %P 1165-1203 %V 5 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.243/ %R 10.5802/alco.243 %G en %F ALCO_2022__5_5_1165_0
Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike. Plethysm and the algebra of uniform block permutations. Algebraic Combinatorics, Volume 5 (2022) no. 5, pp. 1165-1203. doi : 10.5802/alco.243. https://alco.centre-mersenne.org/articles/10.5802/alco.243/
[1] Turbo-straightening for decomposition into standard bases, Internat. J. Algebra Comput., Volume 2 (1992) no. 03, pp. 275-290 | DOI | MR | Zbl
[2] Matrix representations of completely simple semigroups, Amer. J. Math., Volume 64 (1942), pp. 327-342 | DOI | MR | Zbl
[3] An insertion algorithm on multiset partitions with applications to diagram algebras, J. Algebra, Volume 557 (2020), pp. 97-128 | DOI | MR | Zbl
[4] A presentation for the monoid of uniform block permutations, Bull. Austral. Math. Soc., Volume 68 (2003) no. 2, pp. 317-324 | DOI | MR | Zbl
[5] On the irreducible representations of a finite semigroup, Proc. Amer. Math. Soc., Volume 137 (2009) no. 11, pp. 3585-3592 | DOI | MR | Zbl
[6] Set-partition tableaux and representations of diagram algebras, Algebr. Comb., Volume 3 (2020) no. 2, pp. 509-538 | DOI | Numdam | MR | Zbl
[7] Representations of monomial matrices and restriction from to (2018) | arXiv
[8] The On-Line Encyclopedia of Integer Sequences, 2019 http://oeis.org ([Online])
[9] The Potts model and the symmetric group, Subfactors (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 259-267 | MR | Zbl
[10] Characterization for the party algebras, Ryukyu Math. J., Volume 13 (2000), pp. 7-22 | MR | Zbl
[11] , Formal Power Series and Algebraic Combinatorics (FPSAC01), Tempe, Arizona (USA) (2001), pp. 20-26
[12] Irreducible representations of the party algebra, Osaka J. Math., Volume 43 (2006) no. 2, pp. 431-474 | MR | Zbl
[13] Irreducible matrix representations of finite semigroups, Trans. Amer. Math. Soc., Volume 139 (1969), pp. 393-412 | DOI | MR | Zbl
[14] A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | Zbl
[15] The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A, Volume 33 (2000) no. 19, pp. 3669-3695 | DOI | MR | Zbl
[16] Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991, xiv+344 pages | DOI | Numdam | MR
[17] Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications, Volume 3 (1994) no. 1, pp. 51-82 | DOI | MR | Zbl
[18] The structure of the partition algebras, J. Algebra, Volume 183 (1996) no. 2, pp. 319-358 | DOI | MR | Zbl
[19] Characters of finite semigroups, J. Algebra, Volume 22 (1972) no. 1, pp. 183-200 | DOI | MR | Zbl
[20] On semigroup algebras, Proc. Cambridge Philos. Soc., Volume 51 (1955), pp. 1-15 | DOI | MR | Zbl
[21] Characters of party algebras (2005) https://www.ccn.yamanashi.ac.jp/~hnaruse/ken/050404OHP.pdf (slides of talk for Workshop on Cellular and Diagram Algebras in Mathematics and Physics at Oxford Univ., dated 04-04-2005)
[22] On matrix representations of associative systems, Mat. Sb. N.S., Volume 38(80) (1956), pp. 241-260 | MR
[23] Elementary representation and character theory of finite semigroups and its application, Monoids and semigroups with applications (Berkeley, CA, 1989), World Sci. Publ., River Edge, NJ, 1991, pp. 334-367 | MR | Zbl
[24] The symmetric group: Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR
[25] Representations of the rook monoid, J. Algebra, Volume 256 (2002) no. 2, pp. 309-342 | DOI | MR | Zbl
[26] Möbius functions and semigroup representation theory II: Character formulas and multiplicities, Adv. Math., Volume 217 (2008), pp. 1521-1557 | DOI | Zbl
[27] Representation theory of finite monoids, Universitext, Springer, Cham, 2016, xxiv+317 pages | DOI | MR
[28] On the centralizer algebra of the unitary reflection group , Nagoya Math. J., Volume 148 (1997), pp. 113-126 | DOI | MR | Zbl
Cited by Sources: