Plethysm and the algebra of uniform block permutations
Algebraic Combinatorics, Volume 5 (2022) no. 5, pp. 1165-1203.

We study the representation theory of the uniform block permutation algebra in the context of the representation theory of factorizable inverse monoids. The uniform block permutation algebra is a subalgebra of the partition algebra and is also known as the party algebra. We compute its characters and provide a Frobenius characteristic map to symmetric functions. This reveals connections of the characters of the uniform block permutation algebra and plethysms of Schur functions.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.243
Classification: 05E10,  05E05,  20M30
Keywords: partition algebra, plethysm, representation theory of semigroups, symmetric functions
Orellana, Rosa 1; Saliola, Franco 2; Schilling, Anne 3; Zabrocki, Mike 4

1 Mathematics Department Dartmouth College Hanover NH 03755 U.S.A.
2 Département de mathématiques, Université du Québec à Montréal, Canada
3 Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616-8633, U.S.A.
4 Department of Mathematics and Statistics York University 4700 Keele Street Toronto Ontario M3J 1P3 Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_5_1165_0,
     author = {Orellana, Rosa and Saliola, Franco and Schilling, Anne and Zabrocki, Mike},
     title = {Plethysm and the algebra of uniform block permutations},
     journal = {Algebraic Combinatorics},
     pages = {1165--1203},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {5},
     year = {2022},
     doi = {10.5802/alco.243},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.243/}
}
TY  - JOUR
AU  - Orellana, Rosa
AU  - Saliola, Franco
AU  - Schilling, Anne
AU  - Zabrocki, Mike
TI  - Plethysm and the algebra of uniform block permutations
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 1165
EP  - 1203
VL  - 5
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.243/
UR  - https://doi.org/10.5802/alco.243
DO  - 10.5802/alco.243
LA  - en
ID  - ALCO_2022__5_5_1165_0
ER  - 
%0 Journal Article
%A Orellana, Rosa
%A Saliola, Franco
%A Schilling, Anne
%A Zabrocki, Mike
%T Plethysm and the algebra of uniform block permutations
%J Algebraic Combinatorics
%D 2022
%P 1165-1203
%V 5
%N 5
%I The Combinatorics Consortium
%U https://doi.org/10.5802/alco.243
%R 10.5802/alco.243
%G en
%F ALCO_2022__5_5_1165_0
Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike. Plethysm and the algebra of uniform block permutations. Algebraic Combinatorics, Volume 5 (2022) no. 5, pp. 1165-1203. doi : 10.5802/alco.243. https://alco.centre-mersenne.org/articles/10.5802/alco.243/

[1] Carré, Christophe; Lascoux, Alain; Leclerc, Bernard Turbo-straightening for decomposition into standard bases, Internat. J. Algebra Comput., Volume 2 (1992) no. 03, pp. 275-290 | DOI | MR | Zbl

[2] Clifford, A. H. Matrix representations of completely simple semigroups, Amer. J. Math., Volume 64 (1942), pp. 327-342 | DOI | MR | Zbl

[3] Colmenarejo, Laura; Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike An insertion algorithm on multiset partitions with applications to diagram algebras, J. Algebra, Volume 557 (2020), pp. 97-128 | DOI | MR | Zbl

[4] FitzGerald, D. G. A presentation for the monoid of uniform block permutations, Bull. Austral. Math. Soc., Volume 68 (2003) no. 2, pp. 317-324 | DOI | MR | Zbl

[5] Ganyushkin, Olexandr; Mazorchuk, Volodymyr; Steinberg, Benjamin On the irreducible representations of a finite semigroup, Proc. Amer. Math. Soc., Volume 137 (2009) no. 11, pp. 3585-3592 | DOI | MR | Zbl

[6] Halverson, Tom; Jacobson, Theodore N. Set-partition tableaux and representations of diagram algebras, Algebr. Comb., Volume 3 (2020) no. 2, pp. 509-538 | DOI | Numdam | MR | Zbl

[7] Harman, Nate Representations of monomial matrices and restriction from GL n to S n (2018) | arXiv

[8] Inc., OEIS Foundation The On-Line Encyclopedia of Integer Sequences, 2019 http://oeis.org ([Online])

[9] Jones, V. F. R. The Potts model and the symmetric group, Subfactors (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 259-267 | MR | Zbl

[10] Kosuda, Masashi Characterization for the party algebras, Ryukyu Math. J., Volume 13 (2000), pp. 7-22 | MR | Zbl

[11] Kosuda, Masashi, Formal Power Series and Algebraic Combinatorics (FPSAC01), Tempe, Arizona (USA) (2001), pp. 20-26

[12] Kosuda, Masashi Irreducible representations of the party algebra, Osaka J. Math., Volume 43 (2006) no. 2, pp. 431-474 | MR | Zbl

[13] Lallement, Gérard; Petrich, Mario Irreducible matrix representations of finite semigroups, Trans. Amer. Math. Soc., Volume 139 (1969), pp. 393-412 | DOI | MR | Zbl

[14] Loehr, Nicholas A; Remmel, Jeffrey B A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | Zbl

[15] Martin, P. P. The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A, Volume 33 (2000) no. 19, pp. 3669-3695 | DOI | MR | Zbl

[16] Martin, Paul Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991, xiv+344 pages | DOI | Numdam | MR

[17] Martin, Paul Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications, Volume 3 (1994) no. 1, pp. 51-82 | DOI | MR | Zbl

[18] Martin, Paul The structure of the partition algebras, J. Algebra, Volume 183 (1996) no. 2, pp. 319-358 | DOI | MR | Zbl

[19] McAlister, Donald B Characters of finite semigroups, J. Algebra, Volume 22 (1972) no. 1, pp. 183-200 | DOI | MR | Zbl

[20] Munn, W. D. On semigroup algebras, Proc. Cambridge Philos. Soc., Volume 51 (1955), pp. 1-15 | DOI | MR | Zbl

[21] Naruse, Hiroshi Characters of party algebras (2005) https://www.ccn.yamanashi.ac.jp/~hnaruse/ken/050404OHP.pdf (slides of talk for Workshop on Cellular and Diagram Algebras in Mathematics and Physics at Oxford Univ., dated 04-04-2005)

[22] Ponizovskiĭ, I. S. On matrix representations of associative systems, Mat. Sb. N.S., Volume 38(80) (1956), pp. 241-260 | MR

[23] Rhodes, John; Zalcstein, Yechezkel Elementary representation and character theory of finite semigroups and its application, Monoids and semigroups with applications (Berkeley, CA, 1989), World Sci. Publ., River Edge, NJ, 1991, pp. 334-367 | MR | Zbl

[24] Sagan, Bruce E. The symmetric group: Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR

[25] Solomon, Louis Representations of the rook monoid, J. Algebra, Volume 256 (2002) no. 2, pp. 309-342 | DOI | MR | Zbl

[26] Steinberg, Benjamin Möbius functions and semigroup representation theory II: Character formulas and multiplicities, Adv. Math., Volume 217 (2008), pp. 1521-1557 | DOI | Zbl

[27] Steinberg, Benjamin Representation theory of finite monoids, Universitext, Springer, Cham, 2016, xxiv+317 pages | DOI | MR

[28] Tanabe, Kenichiro On the centralizer algebra of the unitary reflection group G(m,p,n), Nagoya Math. J., Volume 148 (1997), pp. 113-126 | DOI | MR | Zbl

Cited by Sources: