The multiple flag variety can be considered as a double flag variety associated to the symmetric pair of type AIII. We consider the diagonal action of on . There is a finite number of orbits for this action, and our first result is a description of these orbits: parametrization (by a certain set of graphs), dimensions, closure relations and cover relations.
In [5], we defined two generalized Steinberg maps from the -orbits of to the nilpotent -orbits in and those in the Cartan complement of , respectively. The main result in the present paper is a complete, explicit description of these two Steinberg maps by means of a combinatorial algorithm which extends the classical Robinson–Schensted correspondence.
Revised:
Accepted:
Published online:
Keywords: double flag variety, conormal bundle, exotic moment map, nilpotent orbits, partial permutations, Robinson–Schensted correspondence, Steinberg variety
Fresse, Lucas 1; Nishiyama, Kyo 2
@article{ALCO_2023__6_1_165_0, author = {Fresse, Lucas and Nishiyama, Kyo}, title = {On generalized {Steinberg} theory for type {AIII}}, journal = {Algebraic Combinatorics}, pages = {165--195}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.245}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.245/} }
TY - JOUR AU - Fresse, Lucas AU - Nishiyama, Kyo TI - On generalized Steinberg theory for type AIII JO - Algebraic Combinatorics PY - 2023 SP - 165 EP - 195 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.245/ DO - 10.5802/alco.245 LA - en ID - ALCO_2023__6_1_165_0 ER -
%0 Journal Article %A Fresse, Lucas %A Nishiyama, Kyo %T On generalized Steinberg theory for type AIII %J Algebraic Combinatorics %D 2023 %P 165-195 %V 6 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.245/ %R 10.5802/alco.245 %G en %F ALCO_2023__6_1_165_0
Fresse, Lucas; Nishiyama, Kyo. On generalized Steinberg theory for type AIII. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 165-195. doi : 10.5802/alco.245. https://alco.centre-mersenne.org/articles/10.5802/alco.245/
[1] Representation theory and complex geometry, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010, x+495 pages (Reprint of the 1997 edition) | DOI | MR
[2] Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993, xiv+186 pages | MR
[3] On the exotic Grassmannian and its nilpotent variety, Represent. Theory, Volume 20 (2016), pp. 451-481 ([Paging previously given as 1–31]) | DOI | MR | Zbl
[4] Orbit embedding for double flag varieties and Steinberg maps, Lie groups, number theory, and vertex algebras (Contemp. Math.), Volume 768, Amer. Math. Soc., [Providence], RI, [2021] ©2021, pp. 21-42 | DOI | MR | Zbl
[5] A generalization of Steinberg theory and an exotic moment map, Int. Math. Res. Not. IMRN (2022) no. 1, pp. 1-62 | DOI | MR | Zbl
[6] Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., Volume 65 (1992) no. 3, pp. 381-420 | DOI | MR | Zbl
[7] Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR
[8] On orbits in double flag varieties for symmetric pairs, Transform. Groups, Volume 18 (2013) no. 4, pp. 1091-1136 | DOI | MR | Zbl
[9] Embeddings of discrete series into principal series, The orbit method in representation theory (Copenhagen, 1988) (Progr. Math.), Volume 82, Birkhäuser Boston, Boston, MA, 1990, pp. 147-175 | DOI | MR | Zbl
[10] Double flag varieties for a symmetric pair and finiteness of orbits, J. Lie Theory, Volume 21 (2011) no. 1, pp. 79-99 | MR | Zbl
[11] Classic and mirabolic Robinson-Schensted-Knuth correspondence for partial flags, Canad. J. Math., Volume 64 (2012) no. 5, pp. 1090-1121 | DOI | MR | Zbl
[12] A Robinson-Schensted correspondence for partial permutations (2020) | arXiv
[13] An occurrence of the Robinson-Schensted correspondence, J. Algebra, Volume 113 (1988) no. 2, pp. 523-528 | DOI | MR | Zbl
[14] A generalization of the Bruhat decomposition, Izv. Ross. Akad. Nauk Ser. Mat., Volume 58 (1994) no. 5, pp. 110-123 | DOI | MR | Zbl
[15] Generalized Robinson-Schensted algorithms for real groups, Internat. Math. Res. Notices (1999) no. 15, pp. 803-834 | DOI | MR | Zbl
[16] Mirabolic Robinson-Schensted-Knuth correspondence, Selecta Math. (N.S.), Volume 14 (2009) no. 3-4, pp. 727-758 | DOI | MR | Zbl
Cited by Sources: