In this paper we show that if is a -design of an association scheme , and the Krein parameters vanish for some and all (), then consists of precisely half of the vertices of or it is a -design, where . We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial -ovoids of generalised octagons of order do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order ; (iii) the dual polar spaces , and , for ; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in , .
Revised:
Accepted:
Published online:
Keywords: association schemes, Delsarte designs, Krein parameters, hemisystems, $m$-ovoids, generalised octagons, finite geometry
Bamberg, John 1; Lansdown, Jesse 1
@article{ALCO_2023__6_1_197_0, author = {Bamberg, John and Lansdown, Jesse}, title = {Implications of vanishing {Krein} parameters on {Delsarte} designs, with applications in finite geometry}, journal = {Algebraic Combinatorics}, pages = {197--212}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.246}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.246/} }
TY - JOUR AU - Bamberg, John AU - Lansdown, Jesse TI - Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry JO - Algebraic Combinatorics PY - 2023 SP - 197 EP - 212 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.246/ DO - 10.5802/alco.246 LA - en ID - ALCO_2023__6_1_197_0 ER -
%0 Journal Article %A Bamberg, John %A Lansdown, Jesse %T Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry %J Algebraic Combinatorics %D 2023 %P 197-212 %V 6 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.246/ %R 10.5802/alco.246 %G en %F ALCO_2023__6_1_197_0
Bamberg, John; Lansdown, Jesse. Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 197-212. doi : 10.5802/alco.246. https://alco.centre-mersenne.org/articles/10.5802/alco.246/
[1] On -ovoids of regular near polygons, Des. Codes Cryptogr., Volume 86 (2018) no. 5, pp. 997-1006 | DOI | MR | Zbl
[2] A relative -cover of a Hermitian surface is a relative hemisystem, J. Algebraic Combin., Volume 45 (2017) no. 4, pp. 1217-1228 | DOI | MR | Zbl
[3] On intriguing sets of the Penttila-Williford association scheme, Linear Algebra Appl., Volume 582 (2019), pp. 327-345 | DOI | MR | Zbl
[4] Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, xxiv+425 pages | MR
[5] Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989, xviii+495 pages | DOI | MR
[6] The Krein condition, spherical designs, Norton algebras and permutation groups, Nederl. Akad. Wetensch. Indag. Math., Volume 40 (1978) no. 2, pp. 196-206 | DOI | MR | Zbl
[7] Strongly regular graphs having strongly regular subconstituents, J. Algebra, Volume 55 (1978) no. 2, pp. 257-280 | DOI | MR | Zbl
[8] Tactical decompositions and orbits of projective groups, Linear Algebra Appl., Volume 46 (1982), pp. 91-102 | DOI | MR | Zbl
[9] Non-existence of imprimitive -polynomial schemes of exceptional type with , European J. Combin., Volume 30 (2009) no. 3, pp. 674-681 | DOI | MR | Zbl
[10] Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs, J. Combin. Theory Ser. A, Volume 115 (2008) no. 6, pp. 1086-1095 | DOI | MR | Zbl
[11] Relative -ovoids of elliptic quadrics, Discrete Math., Volume 342 (2019) no. 5, pp. 1481-1488 | DOI | MR | Zbl
[12] Cameron-Liebler sets of generators in finite classical polar spaces, J. Combin. Theory Ser. A, Volume 167 (2019), pp. 340-388 | DOI | MR | Zbl
[13] The Cameron-Liebler problem for sets, Discrete Math., Volume 339 (2016) no. 2, pp. 470-474 | DOI | MR | Zbl
[14] An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. (1973) no. 10, p. vi+97 | MR | Zbl
[15] The nonexistence of certain generalized polygons, J. Algebra, Volume 1 (1964), pp. 114-131 | DOI | MR | Zbl
[16] Boolean degree 1 functions on some classical association schemes, J. Combin. Theory Ser. A, Volume 162 (2019), pp. 241-270 | DOI | MR | Zbl
[17] Krein covers of complete graphs, Australas. J. Combin., Volume 6 (1992), pp. 245-255 | MR | Zbl
[18] Krein parameters and antipodal tight graphs with diameter 3 and 4, Discrete Math., Volume 244 (2002) no. 1-3, pp. 181-202 Algebraic and topological methods in graph theory (Lake Bled, 1999) | DOI | MR | Zbl
[19] Extremal 1-codes in distance-regular graphs of diameter 3, Des. Codes Cryptogr., Volume 65 (2012) no. 1-2, pp. 29-47 | DOI | MR | Zbl
[20] On the nonexistence of strongly regular graphs with the parameters , Ukraïn. Mat. Zh., Volume 54 (2002) no. 7, pp. 941-949 | DOI | MR
[21] Symmetric designs, sets with two intersection numbers and Krein parameters of incidence graphs, J. Combin. Math. Combin. Comput., Volume 38 (2001), pp. 185-196 | MR | Zbl
[22] A gap result for Cameron-Liebler -classes, Discrete Math., Volume 340 (2017) no. 6, pp. 1311-1318 | DOI | MR | Zbl
[23] There is no McLaughlin geometry, J. Combin. Theory Ser. A, Volume 155 (2018), pp. 27-41 | DOI | MR | Zbl
[24] New families of -polynomial association schemes, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 502-509 | DOI | MR | Zbl
[25] Cameron-Liebler -classes in , Combinatorica, Volume 38 (2018) no. 3, pp. 739-757 | DOI | MR | Zbl
[26] On antidesigns and designs in an association scheme, Delft Progr. Rep., Volume 2 (1982) no. 2, pp. 98-109 | MR | Zbl
[27] On rank permutation groups, J. Algebra, Volume 33 (1975), pp. 22-42 | DOI | MR | Zbl
[28] Imprimitive -polynomial association schemes, J. Algebraic Combin., Volume 7 (1998) no. 2, pp. 165-180 | DOI | MR | Zbl
[29] Nonexistence of exceptional imprimitive -polynomial association schemes with six classes, European J. Combin., Volume 32 (2011) no. 2, pp. 155-161 | DOI | MR | Zbl
[30] The subconstituent algebra of an association scheme. I, J. Algebraic Combin., Volume 1 (1992) no. 4, pp. 363-388 | DOI | MR | Zbl
[31] Interesting pointsets in generalized quadrangles and partial geometries, Linear Algebra Appl., Volume 114/115 (1989), pp. 103-131 | DOI | MR | Zbl
[32] Triple intersection numbers of -polynomial distance-regular graphs, European J. Combin., Volume 33 (2012) no. 6, pp. 1246-1252 | DOI | MR | Zbl
[33] Distance-regular graphs, Electron. J. Combin., Volume #DS22 (2016), p. 156 pages | MR | Zbl
[34] A course in combinatorics, Cambridge University Press, Cambridge, 2001, xiv+602 pages | DOI | MR
[35] Incidence geometry from an algebraic graph theory point of view, Ph. D. Thesis, Ghent University (2011)
[36] Using symbolic computation to prove nonexistence of distance-regular graphs, Electron. J. Combin., Volume 25 (2018) no. 4, p. Paper 4.21, 10 pages | MR | Zbl
[37] Mathematica, Version 12.0 (Champaign, IL, 2021)
Cited by Sources: