We give closed product formulas for the irreducible characters of the symmetric groups related to rectangular ‘almost square’ Young diagrams for a fixed value of an integer and an arbitrary integer .
Revised:
Accepted:
Published online:
Keywords: Characters of the symmetric groups, rectangular Young diagrams, Stanley polynomials
Matsumoto, Sho 1; Śniady, Piotr 2
@article{ALCO_2022__5_4_771_0, author = {Matsumoto, Sho and \'Sniady, Piotr}, title = {Symmetric group characters of almost square shape}, journal = {Algebraic Combinatorics}, pages = {771--784}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {4}, year = {2022}, doi = {10.5802/alco.247}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.247/} }
TY - JOUR AU - Matsumoto, Sho AU - Śniady, Piotr TI - Symmetric group characters of almost square shape JO - Algebraic Combinatorics PY - 2022 SP - 771 EP - 784 VL - 5 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.247/ DO - 10.5802/alco.247 LA - en ID - ALCO_2022__5_4_771_0 ER -
%0 Journal Article %A Matsumoto, Sho %A Śniady, Piotr %T Symmetric group characters of almost square shape %J Algebraic Combinatorics %D 2022 %P 771-784 %V 5 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.247/ %R 10.5802/alco.247 %G en %F ALCO_2022__5_4_771_0
Matsumoto, Sho; Śniady, Piotr. Symmetric group characters of almost square shape. Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 771-784. doi : 10.5802/alco.247. https://alco.centre-mersenne.org/articles/10.5802/alco.247/
[1] Colorings and orientations of graphs, Combinatorica, Volume 12 (1992) no. 2, pp. 125-134 | DOI | MR | Zbl
[2] Representations of symmetric groups and free probability, Adv. Math., Volume 138 (1998) no. 1, pp. 126-181 | DOI | MR | Zbl
[3] Characters of symmetric groups and free cumulants, Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001) (Lecture Notes in Math.), Volume 1815, Springer, Berlin, 2003, pp. 185-200 | DOI | MR | Zbl
[4] Asymptotic results for Representation Theory, Ph. D. Thesis, Universität Zürich (2017) (Preprint arXiv:1805.04065v1)
[5] The algebra of conjugacy classes in symmetric groups, and partial permutations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 256 (1999), p. 95-120, 265 | DOI | MR | Zbl
[6] Linear versus spin: representation theory of the symmetric groups, Algebr. Comb., Volume 3 (2020) no. 1, pp. 249-280 | DOI | MR | Zbl
[7] Free probability and random matrices, Fields Institute Monographs, 35, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2017, xiv+336 pages | DOI | MR
[8] The symmetric group. Representations, combinatorial algorithms, and symmetric functions., Grad. Texts Math., 203, New York, NY: Springer, 2001 | Zbl
[9] Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., Volume 139 (1911), pp. 155-250 | DOI | MR | Zbl
[10] Irreducible symmetric group characters of rectangular shape, Sém. Lothar. Combin., Volume 50 (2003/04), p. Art. B50d, 11 pages | MR | Zbl
[11] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR
Cited by Sources: