We prove that the ribbon graph polynomial of a graph embedded in an orientable surface is irreducible if and only if the embedded graph is neither the disjoint union nor the join of embedded graphs. This result is analogous to the fact that the Tutte polynomial of a graph is irreducible if and only if the graph is connected and non-separable.
Revised:
Accepted:
Published online:
Keywords: Bollobás–Riordan polynomial, delta-matroid, irreducible, ribbon graph, ribbon graph polynomial, separable, Tutte polynomial
Ellis-Monaghan, Joanna A. 1; Goodall, Andrew J. 2; Moffatt, Iain 3; Noble, Steven D. 4; Vena, Lluís 5
@article{ALCO_2022__5_6_1337_0, author = {Ellis-Monaghan, Joanna A. and Goodall, Andrew J. and Moffatt, Iain and Noble, Steven D. and Vena, Llu{\'\i}s}, title = {Irreducibility of the {Tutte} polynomial of an embedded graph}, journal = {Algebraic Combinatorics}, pages = {1337--1351}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {6}, year = {2022}, doi = {10.5802/alco.252}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.252/} }
TY - JOUR AU - Ellis-Monaghan, Joanna A. AU - Goodall, Andrew J. AU - Moffatt, Iain AU - Noble, Steven D. AU - Vena, Lluís TI - Irreducibility of the Tutte polynomial of an embedded graph JO - Algebraic Combinatorics PY - 2022 SP - 1337 EP - 1351 VL - 5 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.252/ DO - 10.5802/alco.252 LA - en ID - ALCO_2022__5_6_1337_0 ER -
%0 Journal Article %A Ellis-Monaghan, Joanna A. %A Goodall, Andrew J. %A Moffatt, Iain %A Noble, Steven D. %A Vena, Lluís %T Irreducibility of the Tutte polynomial of an embedded graph %J Algebraic Combinatorics %D 2022 %P 1337-1351 %V 5 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.252/ %R 10.5802/alco.252 %G en %F ALCO_2022__5_6_1337_0
Ellis-Monaghan, Joanna A.; Goodall, Andrew J.; Moffatt, Iain; Noble, Steven D.; Vena, Lluís. Irreducibility of the Tutte polynomial of an embedded graph. Algebraic Combinatorics, Volume 5 (2022) no. 6, pp. 1337-1351. doi : 10.5802/alco.252. https://alco.centre-mersenne.org/articles/10.5802/alco.252/
[1] Modern graph theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York, 1998, xiv+394 pages | DOI
[2] A polynomial invariant of graphs on orientable surfaces, Proc. London Math. Soc., Volume 83 (2001) no. 3, pp. 513-531 | DOI | MR | Zbl
[3] A polynomial of graphs on surfaces, Math. Ann., Volume 323 (2002) no. 1, pp. 81-96 | DOI | MR | Zbl
[4] Greedy algorithm and symmetric matroids, Math. Programming, Volume 38 (1987) no. 2, pp. 147-159 | DOI | MR | Zbl
[5] Representability of -matroids, Combinatorics (Eger, 1987) (Colloq. Math. Soc. János Bolyai), Volume 52, North-Holland, Amsterdam, 1988, pp. 167-182 | MR | Zbl
[6] Maps and -matroids, Discrete Math., Volume 78 (1989) no. 1-2, pp. 59-71 | DOI | MR | Zbl
[7] Multimatroids. III. Tightness and fundamental graphs, European J. Combin., Volume 22 (2001) no. 5, pp. 657-677 Combinatorial geometries (Luminy, 1999) | DOI | MR | Zbl
[8] A decomposition for combinatorial geometries, Trans. Amer. Math. Soc., Volume 171 (1972), pp. 235-282 | DOI | MR | Zbl
[9] The Tutte polynomial and its applications, Matroid applications (Encyclopedia Math. Appl.), Volume 40, Cambridge Univ. Press, Cambridge, 1992, pp. 123-225 | DOI | MR | Zbl
[10] Pseudomatroids, Discrete Math., Volume 71 (1988) no. 3, pp. 205-217 | DOI | MR | Zbl
[11] Inductive tools for connected delta-matroids and multimatroids, European J. Combin., Volume 63 (2017), pp. 59-69 | DOI | MR | Zbl
[12] Matroids, delta-matroids and embedded graphs, J. Combin. Theory Ser. A, Volume 167 (2019), pp. 7-59 | DOI | MR | Zbl
[13] On the interplay between embedded graphs and delta-matroids, Proc. London Math. Soc., Volume 118 (2019) no. 3, pp. 675-700 | DOI | MR | Zbl
[14] The Tutte polynomial, Aequationes Math., Volume 3 (1969), pp. 211-229 | DOI | MR | Zbl
[15] Some combinatorial properties of discriminants in metric vector spaces, Adv. in Math., Volume 62 (1986) no. 3, pp. 285-312 | DOI | MR | Zbl
[16] Delta matroids whose fundamental graphs are bipartite, Linear Algebra Appl., Volume 160 (1992), pp. 99-112 | DOI | MR | Zbl
[17] Universal Tutte characters via combinatorial coalgebras, Algebr. Comb., Volume 1 (2018) no. 5, pp. 603-651 | Numdam | MR | Zbl
[18] Graph polynomials and their applications I: The Tutte polynomial, Structural analysis of complex networks, Birkhäuser/Springer, New York, 2011, pp. 219-255 | DOI | Zbl
[19] Graphs on surfaces: Dualities, Polynomials, and Knots, SpringerBriefs in Mathematics, Springer, New York, 2013, xii+139 pages | DOI
[20] Handbook of the Tutte polynomial and related topics (Ellis-Monaghan, Joanna A.; Moffatt, Iain, eds.), CRC Press, 2022 | DOI
[21] A Tutte polynomial for maps II: the non-orientable case, European J. Combin., Volume 86 (2020), p. 103095, 32 pages | DOI | MR | Zbl
[22] A Tutte polynomial for maps, Combin. Probab. Comput., Volume 27 (2018) no. 6, pp. 913-945 | DOI | MR | Zbl
[23] Linear relations for a generalized Tutte polynomial, Electron. J. Combin., Volume 22 (2015) no. 1, p. P1.79, 30 pages | MR | Zbl
[24] Topological graph theory, Wiley, 1987
[25] Types of embedded graphs and their Tutte polynomials, Math. Proc. Cambridge Philos. Soc., Volume 169 (2020) no. 2, pp. 255-297 | DOI | MR | Zbl
[26] Hopf algebras and Tutte polynomials, Adv. in Appl. Math., Volume 95 (2018), pp. 271-330 | DOI | MR | Zbl
[27] Graphs, Links, and Duality on Surfaces, Combin. Probab. Comput., Volume 20 (2011), pp. 267-287 | DOI | MR | Zbl
[28] Eulerian circuits of 4-valent graphs imbedded in surfaces, Algebraic Methods in Graph Theory (Lovász, L.; Sós, V., eds.), North Holland, 1981, pp. 451-478 | Zbl
[29] Irreducibility of the Tutte polynomial of a connected matroid, J. Combin. Theory Ser. B, Volume 83 (2001) no. 2, pp. 298-304 | DOI | MR | Zbl
[30] Series–parallel delta-matroids (in preparation)
[31] Delta-matroids for graph theorists, Surveys in combinatorics 2019 (London Math. Soc. Lecture Note Ser.), Volume 456, Cambridge Univ. Press, Cambridge, 2019, pp. 167-220 | DOI | MR | Zbl
[32] Matroidal frameworks for topological Tutte polynomials, J. Combin. Theory Ser. B, Volume 133 (2018), pp. 1-31 | DOI | MR | Zbl
[33] Deletion-contraction and the surface Tutte polynomial (in preparation)
[34] Polynomial invariants of embeddings of graphs on closed surfaces, Sci. Rep. Yokohama Nat. Univ. Sect. I Math. Phys. Chem. (1995) no. 42, pp. 1-10 | MR
[35] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford Univ. Press, Oxford, 2011, xiv+684 pages | DOI
[36] Complexity: knots, colourings and counting, London Mathematical Society Lecture Note Series, 186, Cambridge University Press, Cambridge, 1993, viii+163 pages
Cited by Sources: