Given a graph and a representation of its fundamental group, there is a naturally associated twisted adjacency operator, uniquely defined up to conjugacy. The main result of this article is the fact that this operator behaves in a controlled way under graph covering maps. When such an operator can be used to enumerate objects, or compute a partition function, this has concrete implications on the corresponding enumeration problem, or statistical mechanics model. For example, we show that if is a finite covering graph of a connected graph endowed with edge-weights , then the spanning tree partition function of divides the one of in the ring . Several other consequences are obtained, some known, others new.
Revised:
Accepted:
Published online:
Keywords: graph coverings, linear representation, determinantal partition functions, polynomial identities
Cimasoni, David 1; Kassel, Adrien 2
@article{ALCO_2023__6_1_75_0, author = {Cimasoni, David and Kassel, Adrien}, title = {Graph coverings and twisted operators}, journal = {Algebraic Combinatorics}, pages = {75--94}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.258}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.258/} }
TY - JOUR AU - Cimasoni, David AU - Kassel, Adrien TI - Graph coverings and twisted operators JO - Algebraic Combinatorics PY - 2023 SP - 75 EP - 94 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.258/ DO - 10.5802/alco.258 LA - en ID - ALCO_2023__6_1_75_0 ER -
Cimasoni, David; Kassel, Adrien. Graph coverings and twisted operators. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 75-94. doi : 10.5802/alco.258. https://alco.centre-mersenne.org/articles/10.5802/alco.258/
[1] On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra, Volume 8 (1979/80) no. 3, pp. 177-182 | DOI | MR
[2] Über eine neue Art von L-Reihen, Abh. Math. Sem. Univ. Hamburg, Volume 3 (1924) no. 1, pp. 89-108 | DOI | MR
[3] Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Abh. Math. Sem. Univ. Hamburg, Volume 8 (1931) no. 1, pp. 292-306 | DOI | MR | Zbl
[4] Bicycles and spanning trees, SIAM J. Algebraic Discrete Methods, Volume 7 (1986) no. 1, pp. 1-12 | DOI | MR | Zbl
[5] Directed rooted forests in higher dimension, Electron. J. Combin., Volume 23 (2016) no. 4, Paper no. Paper 4.35, 20 pages | DOI | MR | Zbl
[6] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994, x+306 pages (Corrected reprint of the 1982 original) | MR
[7] Arborescences of covering graphs, Algebr. Comb., Volume 5 (2022) no. 2, pp. 319-346 | DOI | MR | Zbl
[8] A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A, Volume 75 (1996) no. 2, pp. 316-327 | DOI | MR | Zbl
[9] Dimers on graphs in non-orientable surfaces, Lett. Math. Phys., Volume 87 (2009) no. 1-2, pp. 149-179 | DOI | MR | Zbl
[10] The dimer and Ising models on Klein bottles, 2020 (forthcoming, Ann. Inst. Henri Poincaré D) | arXiv
[11] Dimers on surface graphs and spin structures. I, Comm. Math. Phys., Volume 275 (2007) no. 1, pp. 187-208 | DOI | MR | Zbl
[12] On the Dimer Solution of Planar Ising Models, J. Math. Phys., Volume 7 (1966) no. 10, pp. 1776-1781 | DOI
[13] Determinants of Laplacians on graphs, Topology, Volume 32 (1993) no. 1, pp. 35-46 | DOI | MR | Zbl
[14] Algebraic topology, Cambridge University Press, Cambridge, 2002, xii+544 pages | MR
[15] Perfect matchings and perfect squares, J. Combin. Theory Ser. A, Volume 67 (1994) no. 1, pp. 100-115 | DOI | MR | Zbl
[16] Artin formalism and heat kernels, J. Reine Angew. Math., Volume 447 (1994), pp. 165-200 | DOI | MR | Zbl
[17] A Combinatorial Solution of the Two-Dimensional Ising Model, Phys. Rev., Volume 88 (1952), pp. 1332-1337 | Zbl
[18] Enumeration of -acyclic simplicial complexes, Israel J. Math., Volume 45 (1983) no. 4, pp. 337-351 | DOI | MR | Zbl
[19] A colourful path to matrix-tree theorems, Algebr. Comb., Volume 3 (2020) no. 2, pp. 471-482 | DOI | Numdam | MR | Zbl
[20] Quantum spanning forests, 2023 (in preparation)
[21] Dimer statistics and phase transitions, J. Mathematical Phys., Volume 4 (1963), pp. 287-293 | DOI | MR
[22] Graph theory and crystal physics, Graph Theory and Theoretical Physics, Academic Press, London, 1967, pp. 43-110 | MR | Zbl
[23] Spanning forests and the vector bundle Laplacian, Ann. Probab., Volume 39 (2011) no. 5, pp. 1983-2017 | DOI | MR | Zbl
[24] Conformal invariance of loops in the double-dimer model, Comm. Math. Phys., Volume 326 (2014) no. 2, pp. 477-497 | DOI | MR | Zbl
[25] Dimers and amoebae, Ann. of Math. (2), Volume 163 (2006) no. 3, pp. 1019-1056 | DOI | MR | Zbl
[26] An exploration of the permanent-determinant method, Electron. J. Combin., Volume 5 (1998), Paper no. Research Paper 46, 34 pages | MR | Zbl
[27] Graphs and their coverings, 2005 (available online at https://www.savbb.sk/~nedela/graphcov.pdf)
[28] -series of a covering, Proc. Nat. Acad. Sci. U.S.A., Volume 42 (1956), pp. 422-424 | DOI | MR | Zbl
[29] Algebraic number theory, Graduate Texts in Mathematics, 110, Springer-Verlag, New York, 1994, xiv+357 pages | DOI | MR
[30] Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, xvi+914 pages | DOI | MR
[31] A formula for the determinant of a sum of matrices, Lett. Math. Phys., Volume 13 (1987) no. 4, pp. 299-302 | DOI | MR | Zbl
[32] Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages (Translated from the second French edition by Leonard L. Scott) | DOI | MR
[33] Trees, Springer-Verlag, Berlin-New York, 1980, ix+142 pages (Translated from the French by John Stillwell) | DOI | MR
[34] Zeta functions of finite graphs and coverings, Adv. Math., Volume 121 (1996) no. 1, pp. 124-165 | DOI | MR | Zbl
[35] Zeta functions of finite graphs and coverings. II, Adv. Math., Volume 154 (2000) no. 1, pp. 132-195 | DOI | MR | Zbl
[36] Matchings in graphs on non-orientable surfaces, J. Combin. Theory Ser. B, Volume 78 (2000) no. 2, pp. 198-231 | DOI | MR | Zbl
[37] Elements of homotopy theory, Graduate Texts in Mathematics, 61, Springer-Verlag, New York-Berlin, 1978, xxi+744 pages | DOI | MR
Cited by Sources: