Graph coverings and twisted operators
Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 75-94.

Given a graph and a representation of its fundamental group, there is a naturally associated twisted adjacency operator, uniquely defined up to conjugacy. The main result of this article is the fact that this operator behaves in a controlled way under graph covering maps. When such an operator can be used to enumerate objects, or compute a partition function, this has concrete implications on the corresponding enumeration problem, or statistical mechanics model. For example, we show that if Γ ˜ is a finite covering graph of a connected graph Γ endowed with edge-weights x={x e } e , then the spanning tree partition function of Γ divides the one of Γ ˜ in the ring [x]. Several other consequences are obtained, some known, others new.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.258
Classification: 05C30, 05C50, 82B20
Keywords: graph coverings, linear representation, determinantal partition functions, polynomial identities

Cimasoni, David 1; Kassel, Adrien 2

1 Section de mathématiques Université de Genève rue du Conseil-Général 7-9 1205 Genève (Switzerland)
2 CNRS & Unité de Mathématiques Pures et Appliquées ENS de Lyon site Monod 46 allée d’Italie 69364 Lyon Cedex 07 (France)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_1_75_0,
     author = {Cimasoni, David and Kassel, Adrien},
     title = {Graph coverings and twisted operators},
     journal = {Algebraic Combinatorics},
     pages = {75--94},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {1},
     year = {2023},
     doi = {10.5802/alco.258},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.258/}
}
TY  - JOUR
AU  - Cimasoni, David
AU  - Kassel, Adrien
TI  - Graph coverings and twisted operators
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 75
EP  - 94
VL  - 6
IS  - 1
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.258/
DO  - 10.5802/alco.258
LA  - en
ID  - ALCO_2023__6_1_75_0
ER  - 
%0 Journal Article
%A Cimasoni, David
%A Kassel, Adrien
%T Graph coverings and twisted operators
%J Algebraic Combinatorics
%D 2023
%P 75-94
%V 6
%N 1
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.258/
%R 10.5802/alco.258
%G en
%F ALCO_2023__6_1_75_0
Cimasoni, David; Kassel, Adrien. Graph coverings and twisted operators. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 75-94. doi : 10.5802/alco.258. https://alco.centre-mersenne.org/articles/10.5802/alco.258/

[1] Amitsur, Shimshon A. On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra, Volume 8 (1979/80) no. 3, pp. 177-182 | DOI | MR

[2] Artin, Emil Über eine neue Art von L-Reihen, Abh. Math. Sem. Univ. Hamburg, Volume 3 (1924) no. 1, pp. 89-108 | DOI | MR

[3] Artin, Emil Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Abh. Math. Sem. Univ. Hamburg, Volume 8 (1931) no. 1, pp. 292-306 | DOI | MR | Zbl

[4] Berman, Kenneth A. Bicycles and spanning trees, SIAM J. Algebraic Discrete Methods, Volume 7 (1986) no. 1, pp. 1-12 | DOI | MR | Zbl

[5] Bernardi, Olivier; Klivans, Caroline J. Directed rooted forests in higher dimension, Electron. J. Combin., Volume 23 (2016) no. 4, Paper no. Paper 4.35, 20 pages | DOI | MR | Zbl

[6] Brown, Kenneth S. Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994, x+306 pages (Corrected reprint of the 1982 original) | MR

[7] Chepuri, Sunita; Dowd, CJ; Hardt, Andrew; Michel, Gregory; Zhang, Sylvester W.; Zhang, Valerie Arborescences of covering graphs, Algebr. Comb., Volume 5 (2022) no. 2, pp. 319-346 | DOI | MR | Zbl

[8] Chung, Fan; Langlands, Robert P. A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A, Volume 75 (1996) no. 2, pp. 316-327 | DOI | MR | Zbl

[9] Cimasoni, David Dimers on graphs in non-orientable surfaces, Lett. Math. Phys., Volume 87 (2009) no. 1-2, pp. 149-179 | DOI | MR | Zbl

[10] Cimasoni, David The dimer and Ising models on Klein bottles, 2020 (forthcoming, Ann. Inst. Henri Poincaré D) | arXiv

[11] Cimasoni, David; Reshetikhin, Nicolai Dimers on surface graphs and spin structures. I, Comm. Math. Phys., Volume 275 (2007) no. 1, pp. 187-208 | DOI | MR | Zbl

[12] Fisher, Michael E. On the Dimer Solution of Planar Ising Models, J. Math. Phys., Volume 7 (1966) no. 10, pp. 1776-1781 | DOI

[13] Forman, Robin Determinants of Laplacians on graphs, Topology, Volume 32 (1993) no. 1, pp. 35-46 | DOI | MR | Zbl

[14] Hatcher, Allen Algebraic topology, Cambridge University Press, Cambridge, 2002, xii+544 pages | MR

[15] Jockusch, William Perfect matchings and perfect squares, J. Combin. Theory Ser. A, Volume 67 (1994) no. 1, pp. 100-115 | DOI | MR | Zbl

[16] Jorgenson, Jay; Lang, Serge Artin formalism and heat kernels, J. Reine Angew. Math., Volume 447 (1994), pp. 165-200 | DOI | MR | Zbl

[17] Kac, Mark; Ward, John C. A Combinatorial Solution of the Two-Dimensional Ising Model, Phys. Rev., Volume 88 (1952), pp. 1332-1337 | Zbl

[18] Kalai, Gil Enumeration of Q-acyclic simplicial complexes, Israel J. Math., Volume 45 (1983) no. 4, pp. 337-351 | DOI | MR | Zbl

[19] Kassel, Adrien; Lévy, Thierry A colourful path to matrix-tree theorems, Algebr. Comb., Volume 3 (2020) no. 2, pp. 471-482 | DOI | Numdam | MR | Zbl

[20] Kassel, Adrien; Lévy, Thierry Quantum spanning forests, 2023 (in preparation)

[21] Kasteleyn, Pieter W. Dimer statistics and phase transitions, J. Mathematical Phys., Volume 4 (1963), pp. 287-293 | DOI | MR

[22] Kasteleyn, Pieter W. Graph theory and crystal physics, Graph Theory and Theoretical Physics, Academic Press, London, 1967, pp. 43-110 | MR | Zbl

[23] Kenyon, Richard Spanning forests and the vector bundle Laplacian, Ann. Probab., Volume 39 (2011) no. 5, pp. 1983-2017 | DOI | MR | Zbl

[24] Kenyon, Richard Conformal invariance of loops in the double-dimer model, Comm. Math. Phys., Volume 326 (2014) no. 2, pp. 477-497 | DOI | MR | Zbl

[25] Kenyon, Richard; Okounkov, Andrei; Sheffield, Scott Dimers and amoebae, Ann. of Math. (2), Volume 163 (2006) no. 3, pp. 1019-1056 | DOI | MR | Zbl

[26] Kuperberg, Greg An exploration of the permanent-determinant method, Electron. J. Combin., Volume 5 (1998), Paper no. Research Paper 46, 34 pages | MR | Zbl

[27] Kwak, Jin Ho; Nedela, Roman Graphs and their coverings, 2005 (available online at https://www.savbb.sk/~nedela/graphcov.pdf)

[28] Lang, Serge L-series of a covering, Proc. Nat. Acad. Sci. U.S.A., Volume 42 (1956), pp. 422-424 | DOI | MR | Zbl

[29] Lang, Serge Algebraic number theory, Graduate Texts in Mathematics, 110, Springer-Verlag, New York, 1994, xiv+357 pages | DOI | MR

[30] Lang, Serge Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, xvi+914 pages | DOI | MR

[31] Reutenauer, Christophe; Schützenberger, Marcel-Paul A formula for the determinant of a sum of matrices, Lett. Math. Phys., Volume 13 (1987) no. 4, pp. 299-302 | DOI | MR | Zbl

[32] Serre, Jean-Pierre Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages (Translated from the second French edition by Leonard L. Scott) | DOI | MR

[33] Serre, Jean-Pierre Trees, Springer-Verlag, Berlin-New York, 1980, ix+142 pages (Translated from the French by John Stillwell) | DOI | MR

[34] Stark, Harold M.; Terras, Audrey A. Zeta functions of finite graphs and coverings, Adv. Math., Volume 121 (1996) no. 1, pp. 124-165 | DOI | MR | Zbl

[35] Stark, Harold M.; Terras, Audrey A. Zeta functions of finite graphs and coverings. II, Adv. Math., Volume 154 (2000) no. 1, pp. 132-195 | DOI | MR | Zbl

[36] Tesler, Glenn Matchings in graphs on non-orientable surfaces, J. Combin. Theory Ser. B, Volume 78 (2000) no. 2, pp. 198-231 | DOI | MR | Zbl

[37] Whitehead, George W. Elements of homotopy theory, Graduate Texts in Mathematics, 61, Springer-Verlag, New York-Berlin, 1978, xxi+744 pages | DOI | MR

Cited by Sources: