In this short note, we revisit Zeilberger’s proof of the classical matrix-tree theorem and give a unified concise proof of variants of this theorem, some known and some new.
Revised:
Accepted:
Published online:
Mots-clés : matrix-tree theorem, graph, forests, cycles, Laplacian, determinant, Q-determinant, holonomy, ordered products, simplicial complexes, pseudoforests, circular and bicircular matroids
Kassel, Adrien 1; Lévy, Thierry 2
@article{ALCO_2020__3_2_471_0, author = {Kassel, Adrien and L\'evy, Thierry}, title = {A colourful path to matrix-tree theorems}, journal = {Algebraic Combinatorics}, pages = {471--482}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.100}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.100/} }
TY - JOUR AU - Kassel, Adrien AU - Lévy, Thierry TI - A colourful path to matrix-tree theorems JO - Algebraic Combinatorics PY - 2020 SP - 471 EP - 482 VL - 3 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.100/ DO - 10.5802/alco.100 LA - en ID - ALCO_2020__3_2_471_0 ER -
Kassel, Adrien; Lévy, Thierry. A colourful path to matrix-tree theorems. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 471-482. doi : 10.5802/alco.100. https://alco.centre-mersenne.org/articles/10.5802/alco.100/
[1] Counting colorful multi-dimensional trees, Combinatorica, Volume 12 (1992) no. 3, pp. 247-260 | DOI | MR | Zbl
[2] Directed rooted forests in higher dimension, Electron. J. Combin., Volume 23 (2016) no. 4, Paper no. Paper 4.35, 20 pages | DOI | MR | Zbl
[3] A combinatorial proof of the all minors matrix tree theorem, SIAM J. Algebraic Discrete Methods, Volume 3 (1982) no. 3, pp. 319-329 | DOI | MR | Zbl
[4] Simplicial matrix-tree theorems, Trans. Am. Math. Soc., Volume 361 (2009) no. 11, pp. 6073-6114 | DOI | MR | Zbl
[5] Simplicial and cellular trees, Recent trends in combinatorics (IMA Vol. Math. Appl.), Volume 159, Springer, [Cham], 2016, pp. 713-752 | DOI | MR | Zbl
[6] Determinants of Laplacians on graphs, Topology, Volume 32 (1993) no. 1, pp. 35-46 | DOI | MR | Zbl
[7] Enumeration of -acyclic simplicial complexes, Isr. J. Math., Volume 45 (1983) no. 4, pp. 337-351 | DOI | MR | Zbl
[8] Learning about critical phenomena from scribbles and sandpiles, Modélisation Aléatoire et Statistique — Journées MAS 2014 (ESAIM, Proc. Surv.), Volume 51 (2015), pp. 60-73 | DOI | MR | Zbl
[9] Covariant Symanzik identities (2016) (https://arxiv.org/abs/1607.05201)
[10] Quantum spanning forests (2019) (In preparation)
[11] Spanning forests and the vector bundle Laplacian, Ann. Probab., Volume 39 (2011) no. 5, pp. 1983-2017 | DOI | MR | Zbl
[12] Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird, Ann. Phys. und Chem., Volume 72 (1847) no. 12, pp. 497-508 | DOI
[13] Random complexes and -Betti numbers, J. Topol. Anal., Volume 1 (2009) no. 2, pp. 153-175 | DOI | MR | Zbl
[14] Random matrices, Pure and Applied Mathematics (Amsterdam), 142, Elsevier/Academic Press, Amsterdam, 2004, xviii+688 pages | MR | Zbl
[15] On the determinant of an Hermitian matrix of quaternionic elements, Bull. Amer. Math. Soc., Volume 28 (1922) no. 4, pp. 161-162 (Conference abstract available at https://doi.org/10.1090%2FS0002-9904-1922-03536-7) | Zbl
[16] Signed graphs, Discrete Appl. Math., Volume 4 (1982) no. 1, pp. 47-74 | DOI | MR | Zbl
[17] A combinatorial approach to matrix algebra, Discrete Math., Volume 56 (1985), pp. 61-72 | DOI | MR | Zbl
Cited by Sources: