Generalizing stack sorting and -sorting for permutations, we define the permutree sorting algorithm. Given two disjoint subsets and of , the -permutree sorting tries to sort the permutation and fails if and only if there are such that contains the subword if and if . This algorithm is seen as a way to explore an automaton which either rejects all reduced words of , or accepts those reduced words for whose prefixes are all -permutree sortable.
Accepted:
Published online:
Keywords: stack sorting, automata, permutrees, weak order
Pilaud, Vincent 1; Pons, Vivane 2; Tamayo Jimenez, Daniel 2
@article{ALCO_2023__6_1_53_0, author = {Pilaud, Vincent and Pons, Vivane and Tamayo Jimenez, Daniel}, title = {Permutree sorting}, journal = {Algebraic Combinatorics}, pages = {53--74}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.249}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.249/} }
TY - JOUR AU - Pilaud, Vincent AU - Pons, Vivane AU - Tamayo Jimenez, Daniel TI - Permutree sorting JO - Algebraic Combinatorics PY - 2023 SP - 53 EP - 74 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.249/ DO - 10.5802/alco.249 LA - en ID - ALCO_2023__6_1_53_0 ER -
Pilaud, Vincent; Pons, Vivane; Tamayo Jimenez, Daniel. Permutree sorting. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 53-74. doi : 10.5802/alco.249. https://alco.centre-mersenne.org/articles/10.5802/alco.249/
[1] Removahedral congruences versus permutree congruences, Electron. J. Combin., Volume 28 (2021) no. 4, Paper no. P4.8, 38 pages | DOI | MR | Zbl
[2] Cambrian Hopf Algebras, Adv. Math., Volume 311 (2017), pp. 598-633 | DOI | MR | Zbl
[3] The weak order on integer posets, Algebr. Comb., Volume 2 (2019) no. 1, pp. 1-48 | Numdam | MR | Zbl
[4] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[5] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[6] Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., Volume 37 (2007) no. 4, pp. 517-543 | DOI | MR | Zbl
[7] Introduction to automata theory, languages, and computation, Addison-Wesley Publishing Co., Reading, Mass., 1979, x+418 pages (Addison-Wesley Series in Computer Science)
[8] The art of computer programming. Vol. 1: Fundamental algorithms, Second printing, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969, xxi+634 pages
[9] Realization of the Stasheff polytope, Arch. Math. (Basel), Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl
[10] Hopf algebra of the planar binary trees, Adv. Math., Volume 139 (1998) no. 2, pp. 293-309 | DOI | MR | Zbl
[11] Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, Volume 177 (1995) no. 3, pp. 967-982 | DOI | MR | Zbl
[12] Permutrees, Algebr. Comb., Volume 1 (2018) no. 2, pp. 173-224 | Numdam | MR | Zbl
[13] Lattice congruences of the weak order, Order, Volume 21 (2004) no. 4, pp. 315-344 | DOI | MR | Zbl
[14] Cambrian lattices, Adv. Math., Volume 205 (2006) no. 2, pp. 313-353 | DOI | MR | Zbl
[15] Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math. Soc., Volume 359 (2007) no. 12, pp. 5931-5958 | DOI | MR | Zbl
[16] Sortable elements and Cambrian lattices, Algebra Universalis, Volume 56 (2007) no. 3-4, pp. 411-437 | DOI | MR | Zbl
[17] Monoides préordonnés et chaînes de Malcev, Ph. D. Thesis, Université Paris Sorbonne (1951)
Cited by Sources: