Interval groups related to finite Coxeter groups I
Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 471-506.

We derive presentations of the interval groups related to all quasi-Coxeter elements in the Coxeter group of type D n . Type D n is the only infinite family of finite Coxeter groups that admits proper quasi-Coxeter elements. The presentations we obtain are over a set of generators in bijection with what we call a Carter generating set, and the relations are those defined by the related Carter diagram together with a twisted cycle or a cycle commutator relator, depending on whether the quasi-Coxeter element is a Coxeter element or not. The proof is based on the description of two combinatorial techniques related to the intervals of quasi-Coxeter elements.

In a subsequent work [4], we complete our analysis to cover all the exceptional cases of finite Coxeter groups, and establish that almost all the interval groups related to proper quasi-Coxeter elements are not isomorphic to the related Artin groups, hence establishing a new family of interval groups with nice presentations [4, 5]. Alongside the proof of the main results, we establish important properties related to the dual approach to Coxeter and Artin groups.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.266
Classification: 20F55, 20F36
Keywords: Coxeter groups, Quasi-Coxeter elements, Carter diagrams, Artin(–Tits) groups, dual approach to Coxeter and Artin groups, generalised non-crossing partitions, Garside structures, Interval (Garside) structures.
Baumeister, Barbara 1; Neaime, Georges 2; Rees, Sarah 3

1 Fakultät für Mathematik Universität Bielefeld Postfach 10 01 31 33501 Bielefeld Germany
2 Fakultät für Mathematik Universität Bielefeld Postfach 10 01 31 33615 Bielefeld Germany
3 School of Mathematics, Statistics and Physics University of Newcastle Newcastle NE1 7RU UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_2_471_0,
     author = {Baumeister, Barbara and Neaime, Georges and Rees, Sarah},
     title = {Interval groups related to  finite {Coxeter} groups {I}},
     journal = {Algebraic Combinatorics},
     pages = {471--506},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.266},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.266/}
}
TY  - JOUR
AU  - Baumeister, Barbara
AU  - Neaime, Georges
AU  - Rees, Sarah
TI  - Interval groups related to  finite Coxeter groups I
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 471
EP  - 506
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.266/
DO  - 10.5802/alco.266
LA  - en
ID  - ALCO_2023__6_2_471_0
ER  - 
%0 Journal Article
%A Baumeister, Barbara
%A Neaime, Georges
%A Rees, Sarah
%T Interval groups related to  finite Coxeter groups I
%J Algebraic Combinatorics
%D 2023
%P 471-506
%V 6
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.266/
%R 10.5802/alco.266
%G en
%F ALCO_2023__6_2_471_0
Baumeister, Barbara; Neaime, Georges; Rees, Sarah. Interval groups related to  finite Coxeter groups I. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 471-506. doi : 10.5802/alco.266. https://alco.centre-mersenne.org/articles/10.5802/alco.266/

[1] Barot, Michael; Marsh, Robert J. Reflection group presentations arising from cluster algebras, Trans. Amer. Math. Soc., Volume 367 (2015) no. 3, pp. 1945-1967 | DOI | MR | Zbl

[2] Baumeister, Barbara; Dyer, Matthew; Stump, Christian; Wegener, Patrick A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements, Proc. Amer. Math. Soc. Ser. B, Volume 1 (2014), pp. 149-154 | DOI | MR | Zbl

[3] Baumeister, Barbara; Gobet, Thomas; Roberts, Kieran; Wegener, Patrick On the Hurwitz action in finite Coxeter groups, J. Group Theory, Volume 20 (2017) no. 1, pp. 103-131 | DOI | MR | Zbl

[4] Baumeister, Barbara; Holt, Derek F.; Neaime, Georges; Rees, Sarah Interval groups related to finite Coxeter groups II, preprint, 2022 | arXiv

[5] Baumeister, Barbara; Holt, Derek F.; Neaime, Georges; Rees, Sarah Isomorphism and non-isomorphism for interval groups of type D n , preprint, 2022 | arXiv

[6] Baumeister, Barbara; Wegener, Patrick A note on Weyl groups and root lattices, Arch. Math. (Basel), Volume 111 (2018) no. 5, pp. 469-477 | DOI | MR | Zbl

[7] Bessis, David The dual braid monoid, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR | Zbl

[8] Bessis, David; Digne, François; Michel, Jean Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math., Volume 205 (2002) no. 2, pp. 287-309 | DOI | MR | Zbl

[9] Birman, Joan; Ko, Ki Hyoung; Lee, Sang Jin A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl

[10] Brady, Noel; McCammond, Jon Factoring euclidean isometries, Internat. J. Algebra Comput., Volume 25 (2015) no. 1-2, pp. 325-347 | DOI | MR | Zbl

[11] Brieskorn, Egbert; Saito, Kyoji Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl

[12] Cameron, P. J.; Seidel, J. J.; Tsaranov, S. V. Signed graphs, root lattices, and Coxeter groups, J. Algebra, Volume 164 (1994) no. 1, pp. 173-209 | DOI | MR | Zbl

[13] Carter, R. W. Conjugacy classes in the Weyl group, Compositio Math., Volume 25 (1972), pp. 1-59 | Numdam | MR | Zbl

[14] Charney, R.; Meier, J.; Whittlesey, K. Bestvina’s normal form complex and the homology of Garside groups, Geom. Dedicata, Volume 105 (2004), pp. 171-188 | DOI | MR | Zbl

[15] Dehornoy, Patrick; Digne, François; Godelle, Eddy; Krammer, Daan; Michel, Jean Foundations of Garside theory, EMS Tracts in Mathematics, 22, European Mathematical Society (EMS), Zürich, 2015, xviii+691 pages | DOI

[16] Deligne, Pierre Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302 | DOI | Zbl

[17] Dyer, Matthew Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990) no. 1, pp. 57-73 | DOI | MR | Zbl

[18] Dyer, Matthew On minimal lengths of expressions of Coxeter group elements as products of reflections, Proc. Amer. Math. Soc., Volume 129 (2001) no. 9, pp. 2591-2595 | DOI | MR | Zbl

[19] Garside, F. A. The theory of knots and associated problems, Ph. D. Thesis, Oxford University (1965) (Ph.D. thesis)

[20] Garside, F. A. The braid group and other groups, Quart. J. Math. Oxford Ser. (2), Volume 20 (1969), pp. 235-254 | DOI | MR | Zbl

[21] Grant, Joseph; Marsh, Robert J. Braid groups and quiver mutation, Pacific J. Math., Volume 290 (2017) no. 1, pp. 77-116 | DOI | MR | Zbl

[22] Group, The GAP GAP – Groups, Algorithms, and Programming, Version 4.11.0 (2020) https://www.gap-system.org (software package)

[23] Haley, Jacob; Hemminger, David; Landesman, Aaron; Peck, Hailee Artin group presentations arising from cluster algebras, Algebr. Represent. Theory, Volume 20 (2017) no. 3, pp. 629-653 | DOI | MR | Zbl

[24] Holt, Derek F. KBMag – Knuth–Bendix on Monoids and Automatic Groups (1997) https://gap-packages.github.io/kbmag (software package)

[25] McCammond, Jon; Sulway, Robert Artin groups of euclidean type, Invent. Math., Volume 210 (2017) no. 1, pp. 231-282 | DOI | MR | Zbl

[26] Neaime, Georges Interval Garside structures for the complex braid groups B(e,e,n), Trans. Amer. Math. Soc., Volume 372 (2019) no. 12, pp. 8815-8848 | DOI | MR | Zbl

[27] Shephard, G. C.; Todd, J. A. Finite unitary reflection groups, Canad. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl

[28] Shi, Jian-yi Formula for the reflection length of elements in the group G(m,p,n), J. Algebra, Volume 316 (2007) no. 1, pp. 284-296 | MR | Zbl

Cited by Sources: