A tensor-cube version of the Saxl conjecture
Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 507-511.

Let n be a positive integer, and let ρ n =(n,n-1,n-2,...,1) be the “staircase” partition of size N=n+1 2. The Saxl conjecture asserts that every irreducible representation S λ of the symmetric group S N appears as a subrepresentation of the tensor square S ρ n S ρ n . In this short note we give two proofs that every irreducible representation of S N appears in the tensor cube S ρ n S ρ n S ρ n .

Published online:
DOI: 10.5802/alco.267
Classification: 20C30
Keywords: Saxl conjecture, symmetric groups
Harman, Nate 1; Ryba, Christopher 2

1 Department of Mathematics University of Michigan Ann Arbor MI 48101 (USA)
2 Department of Mathematics University of California, Berkeley Berkeley CA 94720 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Harman, Nate and Ryba, Christopher},
     title = {A tensor-cube version of the {Saxl} conjecture},
     journal = {Algebraic Combinatorics},
     pages = {507--511},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.267},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.267/}
AU  - Harman, Nate
AU  - Ryba, Christopher
TI  - A tensor-cube version of the Saxl conjecture
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 507
EP  - 511
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.267/
DO  - 10.5802/alco.267
LA  - en
ID  - ALCO_2023__6_2_507_0
ER  - 
%0 Journal Article
%A Harman, Nate
%A Ryba, Christopher
%T A tensor-cube version of the Saxl conjecture
%J Algebraic Combinatorics
%D 2023
%P 507-511
%V 6
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.267/
%R 10.5802/alco.267
%G en
%F ALCO_2023__6_2_507_0
Harman, Nate; Ryba, Christopher. A tensor-cube version of the Saxl conjecture. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 507-511. doi : 10.5802/alco.267. https://alco.centre-mersenne.org/articles/10.5802/alco.267/

[1] Bessenrodt, C.; Bowman, C.; Sutton, L. Kronecker positivity and 2-modular representation theory, Trans. Amer. Math. Soc. Ser. B, Volume 8 (2021), pp. 1024-1055 | DOI | MR | Zbl

[2] Bessenrodt, Christine; Bowman, Chris Splitting Kronecker squares, 2-decomposition numbers, Catalan Combinatorics, and the Saxl conjecture, preprint, 2022 | arXiv

[3] Heide, Gerhard; Saxl, Jan; Tiep, Pham Huu; Zalesski, Alexandre E. Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 4, pp. 908-930 | DOI | MR | Zbl

[4] Ikenmeyer, Christian The Saxl conjecture and the dominance order, Discrete Math., Volume 338 (2015) no. 11, pp. 1970-1975 | DOI | MR | Zbl

[5] James, Gordon; Kerber, Adalbert The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981, xxviii+510 pages

[6] Li, Xin Saxl conjecture for triple hooks, Discrete Math., Volume 344 (2021) no. 6, Paper no. 112340, 19 pages | MR | Zbl

[7] Luo, Sammy; Sellke, Mark The Saxl conjecture for fourth powers via the semigroup property, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 33-80 | MR | Zbl

[8] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages

[9] Pak, Igor; Panova, Greta; Vallejo, Ernesto Kronecker products, characters, partitions, and the tensor square conjectures, Adv. Math., Volume 288 (2016), pp. 702-731 | MR | Zbl

[10] Sellke, Mark Covering Irrep(S n ) With Tensor Products and Powers, preprint, 2020 | arXiv

[11] Serre, Jean-Pierre Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages (Translated from the second French edition by Leonard L. Scott) | DOI | Zbl

Cited by Sources: