Schubert polynomials, 132-patterns, and Stanley’s conjecture
Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 415-423.

Motivated by a recent conjecture of R. P. Stanley we offer a lower bound for the sum of the coefficients of a Schubert polynomial in terms of 132-pattern containment.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.27
Keywords: Schubert polynomials, permutation patterns
Weigandt, Anna E. 1

1 University of Illinois at Urbana-Champaign Dept. of Mathematics 1409 W. Green St. Urbana IL 61801, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2018__1_4_415_0,
     author = {Weigandt, Anna E.},
     title = {Schubert polynomials, 132-patterns, and {Stanley{\textquoteright}s} conjecture},
     journal = {Algebraic Combinatorics},
     pages = {415--423},
     publisher = {MathOA foundation},
     volume = {1},
     number = {4},
     year = {2018},
     doi = {10.5802/alco.27},
     zbl = {1397.05205},
     mrnumber = {3875071},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.27/}
}
TY  - JOUR
AU  - Weigandt, Anna E.
TI  - Schubert polynomials, 132-patterns, and Stanley’s conjecture
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 415
EP  - 423
VL  - 1
IS  - 4
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.27/
DO  - 10.5802/alco.27
LA  - en
ID  - ALCO_2018__1_4_415_0
ER  - 
%0 Journal Article
%A Weigandt, Anna E.
%T Schubert polynomials, 132-patterns, and Stanley’s conjecture
%J Algebraic Combinatorics
%D 2018
%P 415-423
%V 1
%N 4
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.27/
%R 10.5802/alco.27
%G en
%F ALCO_2018__1_4_415_0
Weigandt, Anna E. Schubert polynomials, 132-patterns, and Stanley’s conjecture. Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 415-423. doi : 10.5802/alco.27. https://alco.centre-mersenne.org/articles/10.5802/alco.27/

[1] Bergeron, Nantel; Billey, Sara RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl

[2] Billey, Sara; Jockusch, William; Stanley, Richard P. Some combinatorial properties of Schubert polynomials, J. Algebr. Comb., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl

[3] Fomin, Sergey; Kirillov, Anatol N. The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | MR | Zbl

[4] Knutson, Allen; Miller, Ezra Gröbner geometry of Schubert polynomials, Ann. Math. (2005), pp. 1245-1318 | DOI | Zbl

[5] Lascoux, Alain; Schützenberger, Marcel-Paul Polynômes de Schubert, C. R. Math. Acad. Sci. Paris, Volume 295 (1982) no. 3, pp. 447-450 | Zbl

[6] Macdonald, Ian G. Notes on Schubert polynomials, Publications du Laboratoire de combinatoire et d’informatique mathématique, 6, Université du Québec à Montréal, 1991

[7] Manivel, Laurent Symmetric functions, Schubert polynomials, and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, 2001 | MR | Zbl

[8] Stanley, Richard P. Some Schubert shenanigans (2017) (https://arxiv.org/abs/1704.00851)

Cited by Sources: