This paper is a follow-up to [5], in which the first author studied primitive association schemes lying between a tensor power of the trivial association scheme and the Hamming scheme . A question which arose naturally in that study was whether all primitive fusions of lie between and for some . This note answers this question positively provided that is large enough. We similarly classify primitive fusions of the th tensor power of a Johnson scheme on points when is large enough in terms of and .
Revised:
Accepted:
Published online:
Keywords: association schemes, permutation groups
Eberhard, Sean 1; Muzychuk, Mikhail 2
@article{ALCO_2023__6_2_533_0, author = {Eberhard, Sean and Muzychuk, Mikhail}, title = {Fusions of tensor powers of {Johnson} schemes}, journal = {Algebraic Combinatorics}, pages = {533--538}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.271}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.271/} }
TY - JOUR AU - Eberhard, Sean AU - Muzychuk, Mikhail TI - Fusions of tensor powers of Johnson schemes JO - Algebraic Combinatorics PY - 2023 SP - 533 EP - 538 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.271/ DO - 10.5802/alco.271 LA - en ID - ALCO_2023__6_2_533_0 ER -
%0 Journal Article %A Eberhard, Sean %A Muzychuk, Mikhail %T Fusions of tensor powers of Johnson schemes %J Algebraic Combinatorics %D 2023 %P 533-538 %V 6 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.271/ %R 10.5802/alco.271 %G en %F ALCO_2023__6_2_533_0
Eberhard, Sean; Muzychuk, Mikhail. Fusions of tensor powers of Johnson schemes. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 533-538. doi : 10.5802/alco.271. https://alco.centre-mersenne.org/articles/10.5802/alco.271/
[1] Association schemes, Cambridge Studies in Advanced Mathematics, 84, Cambridge University Press, Cambridge, 2004, xviii+387 pages (Designed experiments, algebra and combinatorics) | DOI | Zbl
[2] Algebraic combinatorics. I: Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, xxiv+425 pages
[3] Finite permutation groups and finite simple groups, Bull. London Math. Soc., Volume 13 (1981) no. 1, pp. 1-22 | DOI | MR | Zbl
[4] Lectures on coherent configurations, online lecture notes, 2019 http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
[5] Hamming sandwiches, preprint, 2022 (to appear in Combinatorica) | arXiv
[6] Certain maximal subgroups of symmetric and alternating groups, Mat. Sb. (N.S.), Volume 87(129) (1972), pp. 91-121 | MR
[7] On minimal degrees and base sizes of primitive permutation groups, Arch. Math. (Basel), Volume 43 (1984) no. 1, pp. 11-15 | DOI | MR | Zbl
[8] On the orders of primitive groups, J. Algebra, Volume 258 (2002) no. 2, pp. 631-640 | DOI | MR | Zbl
[9] Subschemes of Hamming association schemes , , Interactions between algebra and combinatorics (Ivanov, A. A.; Klin, M. H., eds.), Springer, Dordrecht, 1992, pp. 119-128 Acta Appl. Math. 29 (1992), no. 1-2 | MR | Zbl
[10] Subschemes of the Johnson scheme, European J. Combin., Volume 13 (1992) no. 3, pp. 187-193 | DOI | MR | Zbl
[11] On the subschemes of the Johnson scheme, Mem. Fac. Sci. Kyushu Univ. Ser. A, Volume 46 (1992) no. 1, pp. 85-92 | MR | Zbl
[12] Structure, automorphisms, and isomorphisms of regular combinatorial objects, ProQuest LLC, Ann Arbor, MI, 2016, 169 pages (Ph.D. thesis – The University of Chicago) | MR
[13] Theory of association schemes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, xvi+283 pages
Cited by Sources: