Bounds for sets with few distances distinct modulo a prime ideal
Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 539-545.

Let 𝒪 K be the ring of integers of an algebraic number field K embedded into . Let X be a subset of the Euclidean space d , and D(X) be the set of the squared distances of two distinct points in X. In this paper, we prove that if D(X)𝒪 K and there exist s values a 1 ,...,a s 𝒪 K distinct modulo a prime ideal 𝔭 of 𝒪 K such that each a i is not zero modulo 𝔭 and each element of D(X) is congruent to some a i , then |X|d+s s+d+s-1 s-1.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.272
Classification: 05D05, 05B30
Keywords: $s$-distance set, algebraic number field

Nozaki, Hiroshi 1

1 Aichi University of Education Department of Mathematics Education 1 Hirosawa, Igaya-cho Kariya, Aichi 448-8542 (Japan)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_2_539_0,
     author = {Nozaki, Hiroshi},
     title = {Bounds for sets with few distances distinct modulo a prime ideal},
     journal = {Algebraic Combinatorics},
     pages = {539--545},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.272},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.272/}
}
TY  - JOUR
AU  - Nozaki, Hiroshi
TI  - Bounds for sets with few distances distinct modulo a prime ideal
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 539
EP  - 545
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.272/
DO  - 10.5802/alco.272
LA  - en
ID  - ALCO_2023__6_2_539_0
ER  - 
%0 Journal Article
%A Nozaki, Hiroshi
%T Bounds for sets with few distances distinct modulo a prime ideal
%J Algebraic Combinatorics
%D 2023
%P 539-545
%V 6
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.272/
%R 10.5802/alco.272
%G en
%F ALCO_2023__6_2_539_0
Nozaki, Hiroshi. Bounds for sets with few distances distinct modulo a prime ideal. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 539-545. doi : 10.5802/alco.272. https://alco.centre-mersenne.org/articles/10.5802/alco.272/

[1] Alon, N.; Babai, L.; Suzuki, H. Multilinear polynomials and Frankl–Ray-Chaudhuri–Wilson type intersection theorems, J. Combin. Theory, Ser. A, Volume 58 (1991), pp. 165-180 | DOI | MR | Zbl

[2] Bannai, E.; Bannai, E.; Stanton, D. An upper bound for the cardinality of an s-distance subset in real Euclidean space II, Combinatorica, Volume 3 (1983), pp. 147-152 | DOI | MR | Zbl

[3] Bannai, E.; Kawasaki, K.; Nitamizu, Y.; Sato, T. An upper bound for the cardinality of an s-distance set in Euclidean space, Combinatorica, Volume 23 (2003), pp. 535-557 | DOI | MR | Zbl

[4] Blokhuis, A. Few-Distance Sets, CWI Tract 7, CWI, Amsterdam (1984) | Zbl

[5] Delsarte, P. An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973) | Zbl

[6] Delsarte, P.; Goethals, J.M.; Seidel, J.J. Spherical codes and designs, Geom. Dedicata, Volume 6 (1977), pp. 363-388 | DOI | MR

[7] Delsarte, P.; Levenshtein, V. I. Association schemes and coding theory, IEEE Trans. Inform. Theory, Volume 44 (1998), pp. 2477-2504 | DOI | MR | Zbl

[8] Frankl, P.; Wilson, R.M. Intersection theorems with geometric consequences, Combinatorica, Volume 1 (1981), pp. 357-368 | DOI | MR | Zbl

[9] Glazyrin, A.; Yu, W.-H. Upper bounds for s-distance sets and equiangular lines, Adv. Math., Volume 330 (2018), pp. 810-833 | DOI | MR | Zbl

[10] Godsil, C.D. Polynomial spaces, Discrete Math., Volume 73 (1989), pp. 71-88 | DOI | MR

[11] Godsil, C.D. Algebraic Combinatorics, Chapman and Hall Mathematics Series, Chapman & Hall, New York, 1993

[12] Hegedüs, G.; Rónyai, L. An upper bound for the size of s-distance sets in real algebraic sets, Electron. J. Combin., Volume 28 (2021), p. #P3.27 | DOI | MR | Zbl

[13] Hwang, K-W.; Kim, Y. A proof of Alon–Babai–Suzuki’s conjecture and multilinear polynomials, European J. Combin., Volume 43 (2015), pp. 289-294 | DOI | MR

[14] Jiang, Z.; Tidor, J.; Yao, Y.; Zhang, S.; Zhao, Y. Equiangular lines with a fixed angle, Ann. of Math., Volume 194 (2021), pp. 729-743 | DOI | MR | Zbl

[15] Koornwinder, T.H. A note on the absolute bound for systems of lines, Proc. Ken. Nederl. Akad. Wetensch. Ser. A, Volume 79 (1977), pp. 152-153 | DOI

[16] Larman, D.G.; Rogers, C.A.; Seidel, J.J. On two-distance sets in Euclidean space, Bull. Lond. Math. Soc., Volume 9 (1977), pp. 261-267 | DOI | MR

[17] Levenshtein, V.I. Designs as maximum codes in polynomial metric spaces, Acta Appl. Math., Volume 29 (1992), pp. 1-82 | DOI | MR

[18] Musin, O.R.; Nozaki, H. Bounds on three- and higher-distance sets, European J. Combin., Volume 32 (2011), pp. 1182-1190 | DOI | MR

[19] Nozaki, H. A generalization of Larman–Rogers–Seidel’s theorem, Discrete Math., Volume 311 (2011), pp. 792-799 | DOI | MR | Zbl

[20] Petrov, F.; Pohoata, C. A remark on sets with few distances in d , Proc. Amer. Math. Soc., Volume 149 (2021), pp. 569-571 | DOI | MR

[21] Ray-Chaudhuri, D.K.; Wilson, R.M. On t-designs, Osaka J. Math., Volume 12 (1975), pp. 737-744

Cited by Sources: