Let be the ring of integers of an algebraic number field embedded into . Let be a subset of the Euclidean space , and be the set of the squared distances of two distinct points in . In this paper, we prove that if and there exist values distinct modulo a prime ideal of such that each is not zero modulo and each element of is congruent to some , then .
Revised:
Accepted:
Published online:
Keywords: $s$-distance set, algebraic number field
Nozaki, Hiroshi 1
@article{ALCO_2023__6_2_539_0, author = {Nozaki, Hiroshi}, title = {Bounds for sets with few distances distinct modulo a prime ideal}, journal = {Algebraic Combinatorics}, pages = {539--545}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.272}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.272/} }
TY - JOUR AU - Nozaki, Hiroshi TI - Bounds for sets with few distances distinct modulo a prime ideal JO - Algebraic Combinatorics PY - 2023 SP - 539 EP - 545 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.272/ DO - 10.5802/alco.272 LA - en ID - ALCO_2023__6_2_539_0 ER -
%0 Journal Article %A Nozaki, Hiroshi %T Bounds for sets with few distances distinct modulo a prime ideal %J Algebraic Combinatorics %D 2023 %P 539-545 %V 6 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.272/ %R 10.5802/alco.272 %G en %F ALCO_2023__6_2_539_0
Nozaki, Hiroshi. Bounds for sets with few distances distinct modulo a prime ideal. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 539-545. doi : 10.5802/alco.272. https://alco.centre-mersenne.org/articles/10.5802/alco.272/
[1] Multilinear polynomials and Frankl–Ray-Chaudhuri–Wilson type intersection theorems, J. Combin. Theory, Ser. A, Volume 58 (1991), pp. 165-180 | DOI | MR | Zbl
[2] An upper bound for the cardinality of an -distance subset in real Euclidean space II, Combinatorica, Volume 3 (1983), pp. 147-152 | DOI | MR | Zbl
[3] An upper bound for the cardinality of an -distance set in Euclidean space, Combinatorica, Volume 23 (2003), pp. 535-557 | DOI | MR | Zbl
[4] Few-Distance Sets, CWI Tract 7, CWI, Amsterdam (1984) | Zbl
[5] An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973) | Zbl
[6] Spherical codes and designs, Geom. Dedicata, Volume 6 (1977), pp. 363-388 | DOI | MR
[7] Association schemes and coding theory, IEEE Trans. Inform. Theory, Volume 44 (1998), pp. 2477-2504 | DOI | MR | Zbl
[8] Intersection theorems with geometric consequences, Combinatorica, Volume 1 (1981), pp. 357-368 | DOI | MR | Zbl
[9] Upper bounds for -distance sets and equiangular lines, Adv. Math., Volume 330 (2018), pp. 810-833 | DOI | MR | Zbl
[10] Polynomial spaces, Discrete Math., Volume 73 (1989), pp. 71-88 | DOI | MR
[11] Algebraic Combinatorics, Chapman and Hall Mathematics Series, Chapman & Hall, New York, 1993
[12] An upper bound for the size of -distance sets in real algebraic sets, Electron. J. Combin., Volume 28 (2021), p. #P3.27 | DOI | MR | Zbl
[13] A proof of AlonâBabaiâSuzukiâs conjecture and multilinear polynomials, European J. Combin., Volume 43 (2015), pp. 289-294 | DOI | MR
[14] Equiangular lines with a fixed angle, Ann. of Math., Volume 194 (2021), pp. 729-743 | DOI | MR | Zbl
[15] A note on the absolute bound for systems of lines, Proc. Ken. Nederl. Akad. Wetensch. Ser. A, Volume 79 (1977), pp. 152-153 | DOI
[16] On two-distance sets in Euclidean space, Bull. Lond. Math. Soc., Volume 9 (1977), pp. 261-267 | DOI | MR
[17] Designs as maximum codes in polynomial metric spaces, Acta Appl. Math., Volume 29 (1992), pp. 1-82 | DOI | MR
[18] Bounds on three- and higher-distance sets, European J. Combin., Volume 32 (2011), pp. 1182-1190 | DOI | MR
[19] A generalization of Larman–Rogers–Seidel’s theorem, Discrete Math., Volume 311 (2011), pp. 792-799 | DOI | MR | Zbl
[20] A remark on sets with few distances in , Proc. Amer. Math. Soc., Volume 149 (2021), pp. 569-571 | DOI | MR
[21] On -designs, Osaka J. Math., Volume 12 (1975), pp. 737-744
Cited by Sources: