We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions – biaxial double -Grothendieck polynomials – which specialize at and to double -Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in pairs of variables is a Drinfeld twist of the -matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double -Grothendieck polynomials and dual double -Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin–Kirillov’s Cauchy identity for -Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double -Grothendieck polynomials, and prove a new branching rule for double -Grothendieck polynomials.
Revised:
Accepted:
Published online:
Keywords: Grothendieck polynomial, lattice model, Yang-Baxter equation, Cauchy identity, equivariant K-theory
Brubaker, Ben 1; Frechette, Claire 2; Hardt, Andrew 3; Tibor, Emily 1; Weber, Katherine 1
@article{ALCO_2023__6_3_789_0, author = {Brubaker, Ben and Frechette, Claire and Hardt, Andrew and Tibor, Emily and Weber, Katherine}, title = {Frozen pipes: lattice models for {Grothendieck} polynomials}, journal = {Algebraic Combinatorics}, pages = {789--833}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.277}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.277/} }
TY - JOUR AU - Brubaker, Ben AU - Frechette, Claire AU - Hardt, Andrew AU - Tibor, Emily AU - Weber, Katherine TI - Frozen pipes: lattice models for Grothendieck polynomials JO - Algebraic Combinatorics PY - 2023 SP - 789 EP - 833 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.277/ DO - 10.5802/alco.277 LA - en ID - ALCO_2023__6_3_789_0 ER -
%0 Journal Article %A Brubaker, Ben %A Frechette, Claire %A Hardt, Andrew %A Tibor, Emily %A Weber, Katherine %T Frozen pipes: lattice models for Grothendieck polynomials %J Algebraic Combinatorics %D 2023 %P 789-833 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.277/ %R 10.5802/alco.277 %G en %F ALCO_2023__6_3_789_0
Brubaker, Ben; Frechette, Claire; Hardt, Andrew; Tibor, Emily; Weber, Katherine. Frozen pipes: lattice models for Grothendieck polynomials. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 789-833. doi : 10.5802/alco.277. https://alco.centre-mersenne.org/articles/10.5802/alco.277/
[1] Double Schubert polynomials and double Schubert varieties, Preprint, available at https://people.math.osu.edu/anderson.2804/papers/geomschpolyn.pdf, 2006
[2] Introduction to Equivariant Cohomology in Algebraic Geometry, Contributions to Algebraic Geometry (2012), pp. 71-92 | MR | Zbl
[3] RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[4] Coloured stochastic vertex models and their spectral theory, 2018 | arXiv
[5] Positivity in the Grothendieck group of complex flag varieties, J. Algebra, Volume 258 (2002) no. 1, pp. 137-159 (special issue in celebration of Claudio Procesi’s 60th birthday) | DOI | MR | Zbl
[6] A Yang-Baxter equation for metaplectic ice, Commun. Number Theory Phys., Volume 13 (2019) no. 1, pp. 101-148 | DOI | MR
[7] Colored Vertex Models and Iwahori Whittaker Functions, 2019 | arXiv
[8] Metaplectic Whittaker functions and crystals of type B, Multiple Dirichlet series, L-functions and automorphic forms (Progr. Math.), Volume 300, Birkhäuser/Springer, New York, 2012, pp. 93-118 | DOI | MR | Zbl
[9] Schur polynomials and the Yang-Baxter equation, Comm. Math. Phys., Volume 308 (2011) no. 2, pp. 281-301 | DOI | MR | Zbl
[10] Double Grothendieck polynomials and colored lattice models, Int. Math. Res. Not. IMRN (2022) no. 10, pp. 7231-7258 | DOI | MR | Zbl
[11] Colored five-vertex models and Lascoux polynomials and atoms, J. Lond. Math. Soc. (2), Volume 102 (2020) no. 3, pp. 1047-1066 | DOI | MR | Zbl
[12] Factorial Schur functions and the Yang-Baxter equation, Comment. Math. Univ. St. Pauli, Volume 63 (2014) no. 1-2, pp. 23-45 | MR | Zbl
[13] A guide to quantum groups, Cambridge University Press, Cambridge, 1995, xvi+651 pages (Corrected reprint of the 1994 original) | MR
[14] Yang-Baxter equation, symmetric functions and Grothendieck polynomials, 1993 | arXiv
[15] The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | MR | Zbl
[16] Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, sd, pp. 183-189 | MR
[17] Quantum Integrability and Generalised Quantum Schubert Calculus, Adv. Math., Volume 313 (2017), pp. 282-356 | DOI | MR | Zbl
[18] Combinatorics of Double Grothendieck Polynomials, 2020 | arXiv
[19] A Thom-Porteous formula for connective -theory using algebraic cobordism, J. K-Theory, Volume 14 (2014) no. 2, pp. 343-369 | DOI | MR | Zbl
[20] Symplectic ice, Multiple Dirichlet series, L-functions and automorphic forms (Progr. Math.), Volume 300, Birkhäuser/Springer, New York, 2012, pp. 205-222 | DOI | MR | Zbl
[21] Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, Providence, RI, 1996, viii+266 pages | DOI | MR
[22] Quantum matrix related to the generalized Toda system: an algebraic approach, Field theory, quantum gravity and strings (Meudon/Paris, 1984/1985) (Lecture Notes in Phys.), Volume 246, Springer, Berlin, 1986, pp. 335-361 | DOI | MR
[23] Quantum Grothendieck polynomials, Algebraic methods and -special functions (Montréal, QC, 1996) (CRM Proc. Lecture Notes), Volume 22, Amer. Math. Soc., Providence, RI, 1999, pp. 215-226 | DOI | MR | Zbl
[24] Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), Paper no. 034, 57 pages | DOI | MR | Zbl
[25] Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | DOI | MR | Zbl
[26] Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR | Zbl
[27] Schubert puzzles and integrability I: invariant trilinear forms, 2017 | arXiv
[28] Schubert puzzles and integrability II: multiplying motivic Segre classes, 2021 | arXiv
[29] Diagonalization of transfer matrix of supersymmetry chain with a boundary, J. Math. Phys., Volume 54 (2013) no. 4, p. 043507, 40 | DOI | MR | Zbl
[30] Back stable Schubert calculus, Compos. Math., Volume 157 (2021) no. 5, pp. 883-962 | DOI | MR | Zbl
[31] Anneau de Grothendieck de la variété de drapeaux, The Grothendieck Festschrift, Vol. III (Progr. Math.), Volume 88, Birkhäuser Boston, Boston, MA, 1990, pp. 1-34 | DOI | MR | Zbl
[32] Chern and Yang through ice, 2002 (Preprint)
[33] Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, 99, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003, xii+268 pages | DOI | MR
[34] Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin, 1983, pp. 118-144 | DOI | MR | Zbl
[35] Grothendieck polynomials via permutation patterns and chains in the Bruhat order, Amer. J. Math., Volume 128 (2006) no. 4, pp. 805-848 | DOI | MR | Zbl
[36] Schubert polynomials, Surveys in combinatorics, 1991 (Guildford, 1991) (London Math. Soc. Lecture Note Ser.), Volume 166, Cambridge Univ. Press, Cambridge, 1991, pp. 73-99 | DOI | MR | Zbl
[37] A quantum groups primer, London Mathematical Society Lecture Note Series, 292, Cambridge University Press, Cambridge, 2002, x+169 pages | DOI | MR
[38] Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, Paper no. 355201, 30 pages | DOI | MR | Zbl
[39] Decompositions of Grothendieck polynomials, Int. Math. Res. Not. IMRN (2019) no. 10, pp. 3214-3241 | DOI | MR | Zbl
[40] New families of commuting transfer matrices in -state vertex models, Phys. Lett. A, Volume 84 (1981) no. 8, pp. 407-410 | DOI | MR
[41] Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys., Volume 20 (1990) no. 4, pp. 331-335 | DOI | MR | Zbl
[42] Pieri’s formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 1, pp. 89-110 | DOI | Numdam | MR | Zbl
[43] A Pieri formula and a factorization formula for sums of -theoretic -Schur functions, Algebr. Comb., Volume 2 (2019) no. 4, pp. 447-480 | DOI | Numdam | MR | Zbl
[44] Bumpless pipe dreams and alternating sign matrices, J. Combin. Theory Ser. A, Volume 182 (2021), Paper no. 105470, 52 pages | DOI | MR | Zbl
[45] Littlewood-Richardson coefficients for Grothendieck polynomials from integrability, J. Reine Angew. Math., Volume 757 (2019), pp. 159-195 | DOI | MR | Zbl
[46] Littlewood-Richardson coefficients and integrable tilings, Electron. J. Combin., Volume 16 (2009) no. 1, Paper no. 12, 33 pages | MR | Zbl
Cited by Sources: