Frozen pipes: lattice models for Grothendieck polynomials
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 789-833.

We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions v,wbiaxial double (β,q)-Grothendieck polynomials – which specialize at q=0 and v=1 to double β-Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in n pairs of variables is a Drinfeld twist of the U q (𝔰𝔩 ^ n+1 ) R-matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double β-Grothendieck polynomials and dual double β-Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin–Kirillov’s Cauchy identity for β-Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double β-Grothendieck polynomials, and prove a new branching rule for double β-Grothendieck polynomials.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.277
Classification: 05E14
Keywords: Grothendieck polynomial, lattice model, Yang-Baxter equation, Cauchy identity, equivariant K-theory

Brubaker, Ben 1; Frechette, Claire 2; Hardt, Andrew 3; Tibor, Emily 1; Weber, Katherine 1

1 University of Minnesota School of Mathematics 206 Church St. SE Minneapolis MN 55455 (USA)
2 Boston College Mathematics Department 140 Commonwealth Avenue Chestnut Hill MA 02467 (USA)
3 Stanford University Department of Mathematics Building 380 Stanford California 94305 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_789_0,
     author = {Brubaker, Ben and Frechette, Claire and Hardt, Andrew and Tibor, Emily and Weber, Katherine},
     title = {Frozen pipes: lattice models for {Grothendieck} polynomials},
     journal = {Algebraic Combinatorics},
     pages = {789--833},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.277},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.277/}
}
TY  - JOUR
AU  - Brubaker, Ben
AU  - Frechette, Claire
AU  - Hardt, Andrew
AU  - Tibor, Emily
AU  - Weber, Katherine
TI  - Frozen pipes: lattice models for Grothendieck polynomials
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 789
EP  - 833
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.277/
DO  - 10.5802/alco.277
LA  - en
ID  - ALCO_2023__6_3_789_0
ER  - 
%0 Journal Article
%A Brubaker, Ben
%A Frechette, Claire
%A Hardt, Andrew
%A Tibor, Emily
%A Weber, Katherine
%T Frozen pipes: lattice models for Grothendieck polynomials
%J Algebraic Combinatorics
%D 2023
%P 789-833
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.277/
%R 10.5802/alco.277
%G en
%F ALCO_2023__6_3_789_0
Brubaker, Ben; Frechette, Claire; Hardt, Andrew; Tibor, Emily; Weber, Katherine. Frozen pipes: lattice models for Grothendieck polynomials. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 789-833. doi : 10.5802/alco.277. https://alco.centre-mersenne.org/articles/10.5802/alco.277/

[1] Anderson, Dave Double Schubert polynomials and double Schubert varieties, Preprint, available at https://people.math.osu.edu/anderson.2804/papers/geomschpolyn.pdf, 2006

[2] Anderson, Dave Introduction to Equivariant Cohomology in Algebraic Geometry, Contributions to Algebraic Geometry (2012), pp. 71-92 | MR | Zbl

[3] Bergeron, Nantel; Billey, Sara RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl

[4] Borodin, Alexei; Wheeler, Michael Coloured stochastic vertex models and their spectral theory, 2018 | arXiv

[5] Brion, Michel Positivity in the Grothendieck group of complex flag varieties, J. Algebra, Volume 258 (2002) no. 1, pp. 137-159 (special issue in celebration of Claudio Procesi’s 60th birthday) | DOI | MR | Zbl

[6] Brubaker, Ben; Buciumas, Valentin; Bump, Daniel; Gray, Nathan A Yang-Baxter equation for metaplectic ice, Commun. Number Theory Phys., Volume 13 (2019) no. 1, pp. 101-148 | DOI | MR

[7] Brubaker, Ben; Buciumas, Valentin; Bump, Daniel; Gustafsson, Henrik P. A. Colored Vertex Models and Iwahori Whittaker Functions, 2019 | arXiv

[8] Brubaker, Ben; Bump, Daniel; Chinta, Gautam; Gunnells, Paul E. Metaplectic Whittaker functions and crystals of type B, Multiple Dirichlet series, L-functions and automorphic forms (Progr. Math.), Volume 300, Birkhäuser/Springer, New York, 2012, pp. 93-118 | DOI | MR | Zbl

[9] Brubaker, Ben; Bump, Daniel; Friedberg, Solomon Schur polynomials and the Yang-Baxter equation, Comm. Math. Phys., Volume 308 (2011) no. 2, pp. 281-301 | DOI | MR | Zbl

[10] Buciumas, Valentin; Scrimshaw, Travis Double Grothendieck polynomials and colored lattice models, Int. Math. Res. Not. IMRN (2022) no. 10, pp. 7231-7258 | DOI | MR | Zbl

[11] Buciumas, Valentin; Scrimshaw, Travis; Weber, Katherine Colored five-vertex models and Lascoux polynomials and atoms, J. Lond. Math. Soc. (2), Volume 102 (2020) no. 3, pp. 1047-1066 | DOI | MR | Zbl

[12] Bump, Daniel; McNamara, Peter J.; Nakasuji, Maki Factorial Schur functions and the Yang-Baxter equation, Comment. Math. Univ. St. Pauli, Volume 63 (2014) no. 1-2, pp. 23-45 | MR | Zbl

[13] Chari, Vyjayanthi; Pressley, Andrew A guide to quantum groups, Cambridge University Press, Cambridge, 1995, xvi+651 pages (Corrected reprint of the 1994 original) | MR

[14] Fomin, Sergey; Kirillov, Anatol N. Yang-Baxter equation, symmetric functions and Grothendieck polynomials, 1993 | arXiv

[15] Fomin, Sergey; Kirillov, Anatol N. The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | MR | Zbl

[16] Fomin, Sergey; Kirillov, Anatol N. Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, sd, pp. 183-189 | MR

[17] Gorbounov, Vassily; Korff, Christian Quantum Integrability and Generalised Quantum Schubert Calculus, Adv. Math., Volume 313 (2017), pp. 282-356 | DOI | MR | Zbl

[18] Hawkes, Graham Combinatorics of Double Grothendieck Polynomials, 2020 | arXiv

[19] Hudson, Thomas A Thom-Porteous formula for connective K-theory using algebraic cobordism, J. K-Theory, Volume 14 (2014) no. 2, pp. 343-369 | DOI | MR | Zbl

[20] Ivanov, Dmitriy Symplectic ice, Multiple Dirichlet series, L-functions and automorphic forms (Progr. Math.), Volume 300, Birkhäuser/Springer, New York, 2012, pp. 205-222 | DOI | MR | Zbl

[21] Jantzen, Jens Carsten Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, Providence, RI, 1996, viii+266 pages | DOI | MR

[22] Jimbo, Michio Quantum R matrix related to the generalized Toda system: an algebraic approach, Field theory, quantum gravity and strings (Meudon/Paris, 1984/1985) (Lecture Notes in Phys.), Volume 246, Springer, Berlin, 1986, pp. 335-361 | DOI | MR

[23] Kirillov, Anatol N. Quantum Grothendieck polynomials, Algebraic methods and q-special functions (Montréal, QC, 1996) (CRM Proc. Lecture Notes), Volume 22, Amer. Math. Soc., Providence, RI, 1999, pp. 215-226 | DOI | MR | Zbl

[24] Kirillov, Anatol N. Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), Paper no. 034, 57 pages | DOI | MR | Zbl

[25] Knutson, Allen; Miller, Ezra Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | DOI | MR | Zbl

[26] Knutson, Allen; Miller, Ezra Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR | Zbl

[27] Knutson, Allen; Zinn-Justin, Paul Schubert puzzles and integrability I: invariant trilinear forms, 2017 | arXiv

[28] Knutson, Allen; Zinn-Justin, Paul Schubert puzzles and integrability II: multiplying motivic Segre classes, 2021 | arXiv

[29] Kojima, Takeo Diagonalization of transfer matrix of supersymmetry U q (sl ^(M+1|N+1)) chain with a boundary, J. Math. Phys., Volume 54 (2013) no. 4, p. 043507, 40 | DOI | MR | Zbl

[30] Lam, Thomas; Lee, Seung Jin; Shimozono, Mark Back stable Schubert calculus, Compos. Math., Volume 157 (2021) no. 5, pp. 883-962 | DOI | MR | Zbl

[31] Lascoux, Alain Anneau de Grothendieck de la variété de drapeaux, The Grothendieck Festschrift, Vol. III (Progr. Math.), Volume 88, Birkhäuser Boston, Boston, MA, 1990, pp. 1-34 | DOI | MR | Zbl

[32] Lascoux, Alain Chern and Yang through ice, 2002 (Preprint)

[33] Lascoux, Alain Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, 99, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003, xii+268 pages | DOI | MR

[34] Lascoux, Alain; Schützenberger, Marcel-Paul Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin, 1983, pp. 118-144 | DOI | MR | Zbl

[35] Lenart, Cristian; Robinson, Shawn; Sottile, Frank Grothendieck polynomials via permutation patterns and chains in the Bruhat order, Amer. J. Math., Volume 128 (2006) no. 4, pp. 805-848 | DOI | MR | Zbl

[36] Macdonald, I. G. Schubert polynomials, Surveys in combinatorics, 1991 (Guildford, 1991) (London Math. Soc. Lecture Note Ser.), Volume 166, Cambridge Univ. Press, Cambridge, 1991, pp. 73-99 | DOI | MR | Zbl

[37] Majid, Shahn A quantum groups primer, London Mathematical Society Lecture Note Series, 292, Cambridge University Press, Cambridge, 2002, x+169 pages | DOI | MR

[38] Motegi, Kohei; Sakai, Kazumitsu Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, Paper no. 355201, 30 pages | DOI | MR | Zbl

[39] Pechenik, Oliver; Searles, Dominic Decompositions of Grothendieck polynomials, Int. Math. Res. Not. IMRN (2019) no. 10, pp. 3214-3241 | DOI | MR | Zbl

[40] Perk, Jacques H. H.; Schultz, Cherie L. New families of commuting transfer matrices in q-state vertex models, Phys. Lett. A, Volume 84 (1981) no. 8, pp. 407-410 | DOI | MR

[41] Reshetikhin, N. Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys., Volume 20 (1990) no. 4, pp. 331-335 | DOI | MR | Zbl

[42] Sottile, Frank Pieri’s formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 1, pp. 89-110 | DOI | Numdam | MR | Zbl

[43] Takigiku, Motoki A Pieri formula and a factorization formula for sums of K-theoretic k-Schur functions, Algebr. Comb., Volume 2 (2019) no. 4, pp. 447-480 | DOI | Numdam | MR | Zbl

[44] Weigandt, Anna Bumpless pipe dreams and alternating sign matrices, J. Combin. Theory Ser. A, Volume 182 (2021), Paper no. 105470, 52 pages | DOI | MR | Zbl

[45] Wheeler, Michael; Zinn-Justin, Paul Littlewood-Richardson coefficients for Grothendieck polynomials from integrability, J. Reine Angew. Math., Volume 757 (2019), pp. 159-195 | DOI | MR | Zbl

[46] Zinn-Justin, Paul Littlewood-Richardson coefficients and integrable tilings, Electron. J. Combin., Volume 16 (2009) no. 1, Paper no. 12, 33 pages | MR | Zbl

Cited by Sources: