On Schützenberger modules of the cactus group
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 773-788.

The cactus group acts on the set of standard Young tableaux of a given shape by (partial) Schützenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableaux with the Kazhdan–Lusztig basis. We term these representations of the cactus group “Schützenberger modules”, denoted S Sch λ , and in this paper we investigate their decomposition into irreducible components. We prove that when λ is a hook shape, the cactus group action on S Sch λ factors through S n-1 and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.283
Classification: 05E10, 05E18, 20C30
Keywords: Kazhdan-Lusztig basis, crystal, cactus group, Young tableaux, Kotska numbers
Lim, Jongmin 1; Yacobi, Oded 2

1 J. Lim: School of Mathematics and Statistics University of Sydney Australia
2 O. Yacobi: School of Mathematics and Statistics University of Sydney Australia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_773_0,
     author = {Lim, Jongmin and Yacobi, Oded},
     title = {On {Sch\"utzenberger} modules of the cactus group},
     journal = {Algebraic Combinatorics},
     pages = {773--788},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.283},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.283/}
}
TY  - JOUR
AU  - Lim, Jongmin
AU  - Yacobi, Oded
TI  - On Schützenberger modules of the cactus group
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 773
EP  - 788
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.283/
DO  - 10.5802/alco.283
LA  - en
ID  - ALCO_2023__6_3_773_0
ER  - 
%0 Journal Article
%A Lim, Jongmin
%A Yacobi, Oded
%T On Schützenberger modules of the cactus group
%J Algebraic Combinatorics
%D 2023
%P 773-788
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.283/
%R 10.5802/alco.283
%G en
%F ALCO_2023__6_3_773_0
Lim, Jongmin; Yacobi, Oded. On Schützenberger modules of the cactus group. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 773-788. doi : 10.5802/alco.283. https://alco.centre-mersenne.org/articles/10.5802/alco.283/

[1] Chmutov, Michael; Glick, Max; Pylyavskyy, Pavlo The Berenstein-Kirillov group and cactus groups, J. Comb. Algebra, Volume 4 (2020) no. 2, pp. 111-140 | DOI | MR | Zbl

[2] Chuang, Joseph; Rouquier, Raphaël Perverse Equivalences (2017) (Preprint, available at https://www.math.ucla.edu/~rouquier/papers/perverse.pdf)

[3] Davis, M.; Januszkiewicz, T.; Scott, R. Fundamental groups of blow-ups, Adv. Math., Volume 177 (2003) no. 1, pp. 115-179 | DOI | MR | Zbl

[4] Garsia, A. M.; McLarnan, T. J. Relations between Young’s natural and the Kazhdan-Lusztig representations of S n , Adv. in Math., Volume 69 (1988) no. 1, pp. 32-92 | DOI | MR | Zbl

[5] Gossow, Fern; Yacobi, Oded On the action of the long cycle on the Kazhdan-Lusztig basis, Sém. Lothar. Combin., Volume 86B (2022), Paper no. 11, 12 pages | MR | Zbl

[6] Gossow, Fern; Yacobi, Oded On the action of the Weyl group on canonical bases, 2023 (in preparation)

[7] Halacheva, Iva; Kamnitzer, Joel; Rybnikov, Leonid; Weekes, Alex Crystals and monodromy of Bethe vectors, Duke Math. J., Volume 169 (2020) no. 12, pp. 2337-2419

[8] Halacheva, Iva; Licata, Anthony; Losev, Ivan; Yacobi, Oded Categorical braid group actions and cactus group (2021) | arXiv | MR | Zbl

[9] Henriques, André; Kamnitzer, Joel Crystals and coboundary categories, Duke Math. J., Volume 132 (2006) no. 2, pp. 191-216 | MR | Zbl

[10] Hong, Jin; Kang, Seok-Jin Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002, xviii+307 pages | arXiv

[11] Kashiwara, Masaki Crystal bases of modified quantized enveloping algebra, Duke Math. J., Volume 73 (1994) no. 2, pp. 383-413 | MR | Zbl

[12] Kazhdan, David; Lusztig, George Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | Zbl

[13] Kirillov, A. N.; Berenstein, A. D. Groups generated by involutions, Gelʼfand-Tsetlin patterns, and combinatorics of Young tableaux, Algebra i Analiz, Volume 7 (1995) no. 1, pp. 92-152 | DOI | MR | Zbl

[14] Losev, Ivan Cacti and cells, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 6, pp. 1729-1750 | DOI | MR | Zbl

[15] Rhoades, Brendon Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A, Volume 117 (2010) no. 1, pp. 38-76 | DOI | MR | Zbl

[16] Sagan, Bruce E. The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages

Cited by Sources: