We investigate the class of Kazhdan–Lusztig varieties, and its subclass of matrix Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert variety as (where is maximal possible), we show that can be of complexity- exactly when . Also, we give a combinatorial description of the extremal rays of the weight cone of a Kazhdan–Lusztig variety, which in particular turns out to be the edge cone of an acyclic directed graph. As a consequence we show that given permutations and , the complexity of Kazhdan–Lusztig variety indexed by is the same as the complexity of the Richardson variety indexed by . Finally, we use this description to compute the complexity of certain Kazhdan–Lusztig varieties.
Revised:
Accepted:
Published online:
Keywords: Schubert variety, Kazhdan–Lusztig variety, weight cone, torus action, toric variety, $T$-variety, edge cone, directed graph.
Donten-Bury, Maria 1; Escobar, Laura 2; Portakal, Irem 3
@article{ALCO_2023__6_3_835_0, author = {Donten-Bury, Maria and Escobar, Laura and Portakal, Irem}, title = {Complexity of the usual torus action on {Kazhdan{\textendash}Lusztig} varieties}, journal = {Algebraic Combinatorics}, pages = {835--861}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.279}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.279/} }
TY - JOUR AU - Donten-Bury, Maria AU - Escobar, Laura AU - Portakal, Irem TI - Complexity of the usual torus action on Kazhdan–Lusztig varieties JO - Algebraic Combinatorics PY - 2023 SP - 835 EP - 861 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.279/ DO - 10.5802/alco.279 LA - en ID - ALCO_2023__6_3_835_0 ER -
%0 Journal Article %A Donten-Bury, Maria %A Escobar, Laura %A Portakal, Irem %T Complexity of the usual torus action on Kazhdan–Lusztig varieties %J Algebraic Combinatorics %D 2023 %P 835-861 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.279/ %R 10.5802/alco.279 %G en %F ALCO_2023__6_3_835_0
Donten-Bury, Maria; Escobar, Laura; Portakal, Irem. Complexity of the usual torus action on Kazhdan–Lusztig varieties. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 835-861. doi : 10.5802/alco.279. https://alco.centre-mersenne.org/articles/10.5802/alco.279/
[1] Polyhedral divisors and algebraic torus actions, Math. Ann, Volume 334 (2006), pp. 557-607 | DOI | MR | Zbl
[2] The geometry of T-varieties, Contributions to Algebraic Geometry. Impanga Lecture Notes. (Pragacz, Piotr, ed.), European Mathematical Society (EMS), 2012, pp. 17-69 | DOI | Zbl
[3] P-divisors of Cox rings, Michigan Math. J., Volume 60 (2011), pp. 463-480 | MR | Zbl
[4] Singular loci of Schubert varieties, Progr. Math., 182, Birkhäuser Boston, Inc., Boston, MA, 2000, xii+251 pages | DOI | MR
[5] Combinatorics of Coxeter groups, Grad. Texts in Math., 231, Springer, New York, 2005
[6] Lectures on the Geometry of Flag Varieties, Topics in Cohomological Studies of Algebraic Varieties. Trends in Mathematics. (Pragacz, Piotr, ed.), Birkhäuser Basel, 2005, pp. 33-85 | DOI | Zbl
[7] When are multidegrees positive?, Adv. Math., Volume 374 (2020), p. 107382, 34 pp | DOI | MR | Zbl
[8] Advanced combinatorics: the art of finite and infinite expansions; rev. version, Reidel, Dordrecht, 1974 (Trans. of : Analyse combinatoire. Paris : Presses Univ. de France, 1970) | DOI
[9] Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties, Amer. J. Math., Volume 103 (1981) no. 5, pp. 835-850 | DOI | MR | Zbl
[10] Toric Matrix Schubert Varieties and Their Polytopes, Proc. Amer. Math. Soc., Volume 144 (2016) no. 12, pp. 5081-5096 | DOI | MR | Zbl
[11] Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., Volume 65 (1992) no. 3, pp. 381-420 | MR | Zbl
[12] Young tableaux, London Math. Soc. Stud. Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages (With applications to representation theory and geometry) | MR
[13] Ring graphs and complete intersections toric ideals, Duke Math. J., Volume 310 (2010), pp. 430-441 | MR | Zbl
[14] Patch ideals and Peterson varieties, Transform. Groups, Volume 17 (2012) no. 4, pp. 1011-1036 | DOI | MR | Zbl
[15] On Schubert varieties, Comm. Algebra, Volume 41 (2013) no. 4, pp. 1365-1368 | DOI | MR | Zbl
[16] Representations of Coxeter Groups and Hecke Algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl
[17] Bumpless pipe dreams encode Gröbner geometry of Schubert polynomials, 2021 | arXiv
[18] Gröbner geometry of Schubert polynomials, Ann. of Math., Volume 161 (2005), pp. 1245-1318 | DOI | Zbl
[19] Singularities of Richardson varieties, Math. Res. Lett., Volume 20 (2013) no. 2, pp. 391-400 | DOI | MR | Zbl
[20] The full Kostant-Toda hierarchy on the positive flag variety, Comm. Math. Phys., Volume 335 (2015) no. 1, pp. 247-283 | DOI | MR | Zbl
[21] Generic torus orbit closures in Schubert varieties, J. Combin. Theory Ser. A, Volume 170 (2020), pp. 105-143 | DOI | MR | Zbl
[22] On Schubert varieties of complexity one, Pacific J. Math., Volume 315 (2021) no. 2, pp. 419-447 | DOI | MR | Zbl
[23] Toric Bruhat interval polytopes, J. Combin. Theory Ser. A, Volume 179 (2021), p. Paper No. 105387, 41 pp | DOI | MR | Zbl
[24] Toric Ideals Generated by Quadratic Binomials, J. Algebra, Volume 218 (1999) no. 2, pp. 509-527 | DOI | MR | Zbl
[25] On rigidity of toric varieties arising from bipartite graphs, J. Algebra, Volume 569 (2021), pp. 784-822 | DOI | MR | Zbl
[26] Rigid toric matrix Schubert varieties, J. Algebr. Comb. (2023) | DOI
[27] Projective normality of flag varieties and Schubert varieties, Invent. Math., Volume 79 (1985) no. 2, pp. 217-224 | DOI | MR | Zbl
[28] Faces of Root Polytopes, SIAM J. Discrete Math., Volume 35 (2021) no. 3, pp. 2093-2114 | DOI | MR | Zbl
[29] Bruhat interval polytopes, Adv. Math., Volume 285 (2015), pp. 766-810 | DOI | MR | Zbl
[30] An introduction to equivariant cohomology and homology, following Goresky, Kottwitz, and MacPherson, Snowbird lectures in algebraic geometry (Contemp. Math.), Volume 388, Amer. Math. Soc., Providence, RI, 2005, pp. 169-188 | DOI | MR
[31] Governing singularities of Schubert varieties, J. Algebra, Volume 320 (2008) no. 2, pp. 495-520 | DOI | MR | Zbl
[32] A Gröbner basis for Kazhdan-Lusztig ideals, Amer. J. Math., Volume 134 (2012) no. 4, pp. 1089-1137 | Zbl
Cited by Sources: