A spectral bound for vertex-transitive graphs and their spanning subgraphs
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 689-706.

For any finite, undirected, non-bipartite, vertex-transitive graph, we establish an explicit lower bound for the smallest eigenvalue of its normalised adjacency operator, which depends on the graph only through its degree and its vertex-Cheeger constant. We also prove an analogous result for a large class of irregular graphs, obtained as spanning subgraphs of vertex-transitive graphs. Using a result of Babai, we obtain a lower bound for the smallest eigenvalue of the normalised adjacency operator of a vertex-transitive graph in terms of its diameter and its degree.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.278
Classification: 05C25, 05C50
Keywords: Spectral gap, diameter, vertex-transitive graphs, discrete Cheeger–Buser inequality

Biswas, Arindam 1; Saha, Jyoti Prakash 2

1 Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
2 Department of Mathematics Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhauri Bhopal 462066 Madhya Pradesh India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_689_0,
     author = {Biswas, Arindam and Saha, Jyoti Prakash},
     title = {A spectral bound for vertex-transitive graphs and their spanning subgraphs},
     journal = {Algebraic Combinatorics},
     pages = {689--706},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.278},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.278/}
}
TY  - JOUR
AU  - Biswas, Arindam
AU  - Saha, Jyoti Prakash
TI  - A spectral bound for vertex-transitive graphs and their spanning subgraphs
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 689
EP  - 706
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.278/
DO  - 10.5802/alco.278
LA  - en
ID  - ALCO_2023__6_3_689_0
ER  - 
%0 Journal Article
%A Biswas, Arindam
%A Saha, Jyoti Prakash
%T A spectral bound for vertex-transitive graphs and their spanning subgraphs
%J Algebraic Combinatorics
%D 2023
%P 689-706
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.278/
%R 10.5802/alco.278
%G en
%F ALCO_2023__6_3_689_0
Biswas, Arindam; Saha, Jyoti Prakash. A spectral bound for vertex-transitive graphs and their spanning subgraphs. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 689-706. doi : 10.5802/alco.278. https://alco.centre-mersenne.org/articles/10.5802/alco.278/

[1] Aldous, David On the Markov Chain Simulation Method for Uniform Combinatorial Distributions and Simulated Annealing, Probab. Engrg. Inform. Sci., Volume 1 (1987) no. 1, pp. 33-46 | DOI | Zbl

[2] Alon, N. Eigenvalues and expanders, Combinatorica, Volume 6 (1986) no. 2, pp. 83-96 Theory of computing (Singer Island, Fla., 1984) | DOI | MR

[3] Alon, N.; Milman, V. D. λ 1 , isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B, Volume 38 (1985) no. 1, pp. 73-88 | DOI | MR | Zbl

[4] Alon, Noga; Sudakov, Benny Bipartite subgraphs and the smallest eigenvalue, Combin. Probab. Comput., Volume 9 (2000) no. 1, pp. 1-12 | DOI | MR | Zbl

[5] Babai, László Local expansion of vertex-transitive graphs and random generation in finite groups, Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing (STOC ’91), Association for Computing Machinery, 1991, pp. 164-174 | DOI

[6] Biswas, Arindam On a Cheeger type inequality in Cayley graphs of finite groups, European J. Combin., Volume 81 (2019), pp. 298-308 | DOI | MR | Zbl

[7] Biswas, Arindam; Saha, Jyoti Prakash A Cheeger type inequality in finite Cayley sum graphs, Algebr. Comb., Volume 4 (2021) no. 3, pp. 517-531 | Numdam | MR | Zbl

[8] Biswas, Arindam; Saha, Jyoti Prakash Expansion in Cayley graphs, Cayley sum graphs and their twists, 2021 | arXiv

[9] Biswas, Arindam; Saha, Jyoti Prakash Spectra of twists of Cayley and Cayley sum graphs, Adv. in Appl. Math., Volume 132 (2022), Paper no. 102272, 34 pages | MR | Zbl

[10] Breuillard, Emmanuel; Green, Ben; Guralnick, Robert; Tao, Terence Expansion in finite simple groups of Lie type, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 6, pp. 1367-1434 | DOI | MR | Zbl

[11] Brouwer, Andries E.; Haemers, Willem H. Spectra of graphs, Universitext, Springer, New York, 2012, xiv+250 pages

[12] Chiu, Patrick Cubic Ramanujan graphs, Combinatorica, Volume 12 (1992) no. 3, pp. 275-285 | DOI | MR | Zbl

[13] Chung, Fan R. K. Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997, xii+207 pages

[14] Cioabă, Sebastian M. The spectral radius and the maximum degree of irregular graphs, Electron. J. Combin., Volume 14 (2007) no. 1, Paper no. 38, 10 pages | MR | Zbl

[15] Cioabă, Sebastian M.; Gregory, David A.; Nikiforov, Vladimir Extreme eigenvalues of nonregular graphs, J. Combin. Theory Ser. B, Volume 97 (2007) no. 3, pp. 483-486 | DOI | MR | Zbl

[16] Dodziuk, Jozef Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc., Volume 284 (1984) no. 2, pp. 787-794 | DOI | MR | Zbl

[17] Feng, Rongquan; Zhang, Wenqian A note on spectral radius and maximum degree of irregular graphs, Graphs Combin., Volume 37 (2021) no. 3, pp. 1121-1127 | DOI | MR | Zbl

[18] Freĭman, G. A. Groups and the inverse problems of additive number theory, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gos. Univ., Moscow, 1973, pp. 175-183 | Zbl

[19] Knox, Fiachra; Mohar, Bojan Fractional decompositions and the smallest-eigenvalue separation, Electron. J. Combin., Volume 26 (2019) no. 4, Paper no. 4.41, 6 pages | MR | Zbl

[20] Liu, Bolian; Shen, Jian; Wang, Xinmao On the largest eigenvalue of non-regular graphs, J. Combin. Theory Ser. B, Volume 97 (2007) no. 6, pp. 1010-1018 | MR | Zbl

[21] Lubotzky, A.; Phillips, R.; Sarnak, P. Ramanujan graphs, Combinatorica, Volume 8 (1988) no. 3, pp. 261-277 | DOI | MR | Zbl

[22] Margulis, G. A. Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Problemy Peredachi Informatsii, Volume 24 (1988) no. 1, pp. 51-60

[23] Marušič, Dragan; Scapellato, Raffaele; Zagaglia Salvi, Norma Generalized Cayley graphs, Discrete Math., Volume 102 (1992) no. 3, pp. 279-285 | DOI | MR | Zbl

[24] Moorman, Nina; Ralli, Peter; Tetali, Prasad On the bipartiteness constant and expansion of Cayley graphs, European J. Combin., Volume 102 (2022), p. Paper No. 103481 | DOI | MR | Zbl

[25] Morgenstern, Moshe Existence and explicit constructions of q+1 regular Ramanujan graphs for every prime power q, J. Combin. Theory Ser. B, Volume 62 (1994) no. 1, pp. 44-62 | DOI | MR | Zbl

[26] Qiao, Zhi; Jing, Yifan; Koolen, Jack Non-bipartite distance-regular graphs with a small smallest eigenvalue, Electron. J. Combin., Volume 26 (2019) no. 2, Paper no. 2.41, 10 pages | MR | Zbl

[27] Saloff-Coste, L. Lectures on finite Markov chains, Lectures on probability theory and statistics (Saint-Flour, 1996) (Lecture Notes in Math.), Volume 1665, Springer, Berlin, 1997, pp. 301-413 | DOI | MR | Zbl

[28] Shkredov, I. D. On the Spectral Gap and the Diameter of Cayley Graphs, Tr. Mat. Inst. Steklova, Volume 314 (2021), pp. 318-337 | MR

[29] Stevanović, Dragan The largest eigenvalue of nonregular graphs, J. Combin. Theory Ser. B, Volume 91 (2004) no. 1, pp. 143-146 | DOI | MR | Zbl

[30] van Lint, J. H.; Wilson, R. M. A course in combinatorics, Cambridge University Press, Cambridge, 2001, xiv+602 pages

[31] Zhang, Wenqian A new result on spectral radius and maximum degree of irregular graphs, Graphs Combin., Volume 37 (2021) no. 3, pp. 1103-1119 | DOI | MR | Zbl

[32] Zhang, Xiao-Dong Eigenvectors and eigenvalues of non-regular graphs, Linear Algebra Appl., Volume 409 (2005), pp. 79-86 | DOI | MR | Zbl

Cited by Sources: