Let be a prime power and define , for a nonnegative integer . Let denote the set of all subspaces of , the -dimensional -vector space of all column vectors with components.
Define a complex matrix with entries given by
We think of as a -analog of the adjacency matrix of the -cube. We show that the eigenvalues of are
and we write down an explicit canonical eigenbasis of . We give a weighted count of the number of rooted spanning trees in the -analog of the -cube.
Revised:
Accepted:
Published online:
Keywords: $n$-cube, $q$-analog
Ghosh, Subhajit 1; Srinivasan, Murali K. 2
@article{ALCO_2023__6_3_707_0, author = {Ghosh, Subhajit and Srinivasan, Murali K.}, title = {A $q$-analog of the adjacency matrix of the $n$-cube}, journal = {Algebraic Combinatorics}, pages = {707--725}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.282}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.282/} }
TY - JOUR AU - Ghosh, Subhajit AU - Srinivasan, Murali K. TI - A $q$-analog of the adjacency matrix of the $n$-cube JO - Algebraic Combinatorics PY - 2023 SP - 707 EP - 725 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.282/ DO - 10.5802/alco.282 LA - en ID - ALCO_2023__6_3_707_0 ER -
%0 Journal Article %A Ghosh, Subhajit %A Srinivasan, Murali K. %T A $q$-analog of the adjacency matrix of the $n$-cube %J Algebraic Combinatorics %D 2023 %P 707-725 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.282/ %R 10.5802/alco.282 %G en %F ALCO_2023__6_3_707_0
Ghosh, Subhajit; Srinivasan, Murali K. A $q$-analog of the adjacency matrix of the $n$-cube. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 707-725. doi : 10.5802/alco.282. https://alco.centre-mersenne.org/articles/10.5802/alco.282/
[1] Evaluation of Sylvester type determinants using orthogonal polynomials, Advances in analysis, World Sci. Publ., Hackensack, NJ, 2005, pp. 1-16 | MR | Zbl
[2] Harmonic Analysis on Finite Groups–Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Studies in Advanced Mathematics, 108, Cambridge University Press, Cambridge, 2008, xiv+440 pages | DOI | MR
[3] How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.), Volume 32 (1995) no. 1, pp. 1-37 | DOI | MR | Zbl
[4] Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990, xx+287 pages (With a foreword by Richard Askey) | MR
[5] A random walk on subspaces, In preparation, 2023
[6] The number of subspaces of a vector space, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), Academic Press, New York (1969), pp. 75-83 | MR | Zbl
[7] Some tridiagonal determinants, Ramanujan J., Volume 61 (2023) no. 1, pp. 319-328 | DOI | MR | Zbl
[8] Random walk and the theory of Brownian motion, Amer. Math. Monthly, Volume 54 (1947), pp. 369-391 | DOI | MR | Zbl
[9] Quantum calculus, Universitext, Springer-Verlag, New York, 2002, x+112 pages | DOI | MR
[10] The subset-subspace analogy, Gian-Carlo Rota on combinatorics (Contemp. Mathematicians), Birkhäuser Boston, Boston, MA, 1995, pp. 277-283 | MR
[11] Representations of on posets and the Sperner property, SIAM J. Algebraic Discrete Methods, Volume 3 (1982) no. 2, pp. 275-280 | DOI | MR
[12] A positive combinatorial formula for the complexity of the -analog of the -cube, Electron. J. Combin., Volume 19 (2012) no. 2, Paper no. 34, 14 pages | MR | Zbl
[13] The Goldman-Rota identity and the Grassmann scheme, Electron. J. Combin., Volume 21 (2014) no. 1, Paper no. 1.37, 23 pages | MR | Zbl
[14] Algebraic Combinatorics–Walks, Trees, Tableaux, and More (Second Edition), Undergraduate Texts in Mathematics, Springer, Cham, 2018, xvi+263 pages | DOI | MR
[15] Another look at a matrix of Mark Kac, Proceedings of the First Conference of the International Linear Algebra Society (Provo, UT, 1989), Volume 150 (1991), pp. 341-360 | DOI | MR | Zbl
[16] The incidence algebra of a uniform poset, Coding theory and design theory, Part I (IMA Vol. Math. Appl.), Volume 20, Springer, New York, 1990, pp. 193-212 | DOI | MR | Zbl
[17] Two linear transformations each tridiagonal with respect to an eigenbasis of the other; an algebraic approach to the Askey scheme of orthogonal polynomials, 2004 | arXiv
[18] Lowering-raising triples and , Linear Algebra Appl., Volume 486 (2015), pp. 1-172 | DOI | MR | Zbl
[19] Notes on the Leonard system classification, Graphs Combin., Volume 37 (2021) no. 5, pp. 1687-1748 | DOI | MR | Zbl
Cited by Sources: