The cactus group acts on the set of standard Young tableaux of a given shape by (partial) Schützenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableaux with the Kazhdan–Lusztig basis. We term these representations of the cactus group “Schützenberger modules”, denoted , and in this paper we investigate their decomposition into irreducible components. We prove that when is a hook shape, the cactus group action on factors through and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.
Revised:
Accepted:
Published online:
Keywords: Kazhdan-Lusztig basis, crystal, cactus group, Young tableaux, Kotska numbers
Lim, Jongmin 1; Yacobi, Oded 2
@article{ALCO_2023__6_3_773_0, author = {Lim, Jongmin and Yacobi, Oded}, title = {On {Sch\"utzenberger} modules of the cactus group}, journal = {Algebraic Combinatorics}, pages = {773--788}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.283}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.283/} }
TY - JOUR AU - Lim, Jongmin AU - Yacobi, Oded TI - On Schützenberger modules of the cactus group JO - Algebraic Combinatorics PY - 2023 SP - 773 EP - 788 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.283/ DO - 10.5802/alco.283 LA - en ID - ALCO_2023__6_3_773_0 ER -
%0 Journal Article %A Lim, Jongmin %A Yacobi, Oded %T On Schützenberger modules of the cactus group %J Algebraic Combinatorics %D 2023 %P 773-788 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.283/ %R 10.5802/alco.283 %G en %F ALCO_2023__6_3_773_0
Lim, Jongmin; Yacobi, Oded. On Schützenberger modules of the cactus group. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 773-788. doi : 10.5802/alco.283. https://alco.centre-mersenne.org/articles/10.5802/alco.283/
[1] The Berenstein-Kirillov group and cactus groups, J. Comb. Algebra, Volume 4 (2020) no. 2, pp. 111-140 | DOI | MR | Zbl
[2] Perverse Equivalences (2017) (Preprint, available at https://www.math.ucla.edu/~rouquier/papers/perverse.pdf)
[3] Fundamental groups of blow-ups, Adv. Math., Volume 177 (2003) no. 1, pp. 115-179 | DOI | MR | Zbl
[4] Relations between Young’s natural and the Kazhdan-Lusztig representations of , Adv. in Math., Volume 69 (1988) no. 1, pp. 32-92 | DOI | MR | Zbl
[5] On the action of the long cycle on the Kazhdan-Lusztig basis, Sém. Lothar. Combin., Volume 86B (2022), Paper no. 11, 12 pages | MR | Zbl
[6] On the action of the Weyl group on canonical bases, 2023 (in preparation)
[7] Crystals and monodromy of Bethe vectors, Duke Math. J., Volume 169 (2020) no. 12, pp. 2337-2419
[8] Categorical braid group actions and cactus group (2021) | arXiv | MR | Zbl
[9] Crystals and coboundary categories, Duke Math. J., Volume 132 (2006) no. 2, pp. 191-216 | MR | Zbl
[10] Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002, xviii+307 pages | arXiv
[11] Crystal bases of modified quantized enveloping algebra, Duke Math. J., Volume 73 (1994) no. 2, pp. 383-413 | MR | Zbl
[12] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | Zbl
[13] Groups generated by involutions, Gelʼfand-Tsetlin patterns, and combinatorics of Young tableaux, Algebra i Analiz, Volume 7 (1995) no. 1, pp. 92-152 | DOI | MR | Zbl
[14] Cacti and cells, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 6, pp. 1729-1750 | DOI | MR | Zbl
[15] Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A, Volume 117 (2010) no. 1, pp. 38-76 | DOI | MR | Zbl
[16] The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages
Cited by Sources: