We initiate the study of positive-tropical generators as positive analogues of the concept of tropical bases. Applying this to the tropicalization of determinantal varieties, we develop criteria for characterizing their positive part. We focus on the study of low-rank matrices, in particular matrices of rank and . Moreover, in the case of square-matrices of corank , we fully classify the signed tropicalization of the determinantal variety, even beyond the positive part.
Accepted:
Published online:
Keywords: signed tropicalization, positive-tropical generators, determinantal varieties, Birkhoff polytope, bicolored phylogenetic trees

@article{ALCO_2023__6_4_999_0, author = {Brandenburg, Marie-Charlotte and Loho, Georg and Sinn, Rainer}, title = {Tropical positivity and determinantal varieties}, journal = {Algebraic Combinatorics}, pages = {999--1040}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.286}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.286/} }
TY - JOUR AU - Brandenburg, Marie-Charlotte AU - Loho, Georg AU - Sinn, Rainer TI - Tropical positivity and determinantal varieties JO - Algebraic Combinatorics PY - 2023 SP - 999 EP - 1040 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.286/ DO - 10.5802/alco.286 LA - en ID - ALCO_2023__6_4_999_0 ER -
%0 Journal Article %A Brandenburg, Marie-Charlotte %A Loho, Georg %A Sinn, Rainer %T Tropical positivity and determinantal varieties %J Algebraic Combinatorics %D 2023 %P 999-1040 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.286/ %R 10.5802/alco.286 %G en %F ALCO_2023__6_4_999_0
Brandenburg, Marie-Charlotte; Loho, Georg; Sinn, Rainer. Tropical positivity and determinantal varieties. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 999-1040. doi : 10.5802/alco.286. https://alco.centre-mersenne.org/articles/10.5802/alco.286/
[2] Positive configuration space, Commun. Math. Phys., Volume 384 (2021) no. 2, pp. 909-954 | DOI | MR | Zbl
[3] Massively parallel computation of tropical varieties, their positive part, and tropical Grassmannians, J. Symbolic Comput., Volume 120 (2024), Paper no. 102224, 28 pages | MR | Zbl
[4] The combinatorics of permutation polytopes, Formal Power Series and Algebraic Combinatorics (Billera, Louis J.; Greene, Curtis; Simion, Rodica; Stanley, Richard P., eds.) (Series in Discrete Mathematics and Theoretical Computer Science), Volume 24, American Mathematical Society, 1996, pp. 1-23 | MR | Zbl
[5] Positive tropical flags and the positive tropical Dressian, Sém. Lothar. Combin., Volume 86B (2022), Paper no. 86, 12 pages | MR | Zbl
[6] The minors of a matrix are a tropical basis, Linear Algebra Appl., Volume 435 (2011) no. 7, pp. 1598-1611 | DOI | MR | Zbl
[7] Nonnegative ranks, decompositions, and factorizations of nonnegative matrices, Linear Algebra Appl., Volume 190 (1993), pp. 149-168 | DOI | MR | Zbl
[8] The moduli space of tropically collinear points in , Collect. Math., Volume 56 (2005) no. 1, pp. 1-19 | MR | Zbl
[9] On the rank of a tropical matrix, Combinatorial and Computational Geometry, Cambridge University Press, 2005, pp. 213-242 | Zbl
[10] Tropical convexity, Doc. Math., Volume 9 (2004), pp. 1-27 Erratum in Documenta Mathematica (9:205–206, 2004) | DOI | MR | Zbl
[11] Binomial ideals, Duke Math. J., Volume 84 (1996) no. 1, pp. 1-45 | MR | Zbl
[12] Stiefel tropical linear spaces, J. Combin. Theory Ser. A, Volume 135 (2015), pp. 291-331 | DOI | MR | Zbl
[13] The slack realization space of a polytope, SIAM J. Discrete Math., Volume 33 (2019) no. 3, pp. 1637-1653 | DOI | MR | Zbl
[14] How to draw tropical planes, Electron. J. Comb., Volume 16 (2009) no. 2, Paper no. R6 | DOI | MR | Zbl
[15] Minkowski decompositions for generalized associahedra of acyclic type, Algebr. Comb., Volume 4 (2021) no. 5, pp. 757-775 | Numdam | MR | Zbl
[16] Essentials of Tropical Combinatorics, Graduate Studies in Mathematics, 219, American Mathematical Society, 2021 | DOI
[17] Introduction to tropical geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, 2015 | DOI
[18] The space of tropically collinear points is shellable, Collect. Math., Volume 60 (2009) no. 1, pp. 63-77 | DOI | MR | Zbl
[19] Exponential varieties, Proc. London Math. Soc., Volume 112 (2016) no. 1, pp. 27-56 | DOI | MR | Zbl
[20] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer New York, 2005
[21] Tropical geometry of statistical models, Proc. Natl. Acad. Sci. U. S. A., Volume 101 (2004) no. 46, pp. 16132-16137 | DOI | MR | Zbl
[22] Faces of Birkhoff Polytopes, Electron. J. Comb., Volume 22 (2015) no. 1, Paper no. P1.67, 36 pages | MR | Zbl
[23] Multitriangulations and tropical Pfaffians, 2022 | arXiv
[24] When do the -by- minors of a matrix form a tropical basis?, J. Combin. Theory Ser. A, Volume 120 (2013) no. 6, pp. 1166-1201 | DOI | MR | Zbl
[25] The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | DOI | MR | Zbl
[26] The tropical totally positive Grassmannian, J. Algebr. Comb., Volume 22 (2005) no. 2, pp. 189-210 | DOI | MR | Zbl
[27] The positive Dressian equals the positive tropical Grassmannian, Trans. Amer. Math. Soc. Ser. B, Volume 8 (2021), pp. 330-353 | DOI | MR | Zbl
[28] On real tropical bases and real tropical discriminants, Collect. Math., Volume 66 (2015) no. 1, pp. 77-92 | DOI | MR | Zbl
[29] Gluing algebraic hypersurfaces and constructions of curves, Tezisy Leningradskoj Mezhdunarodnoj Topologicheskoj Konferentsii 1982, Nauka, 1983, pp. 149-197
[30] Patchworking real algebraic varieties, 2006 | arXiv
Cited by Sources: