We study two linear bases of the free associative algebra : one is formed by the Magnus polynomials of type and the other is its dual basis (formed by what we call the “demi-shuffle” polynomials) with respect to the standard pairing on the monomials of . As an application, we derive a formula of Le–Murakami, Furusho type that expresses arbitrary coefficients of a group-like series in terms of the “regular” coefficients of .
Revised:
Accepted:
Published online:
Keywords: shuffle product, non-commutative polynomial, group-like series
Nakamura, Hiroaki 1
@article{ALCO_2023__6_4_929_0, author = {Nakamura, Hiroaki}, title = {Demi-shuffle duals of {Magnus} polynomials in a free associative algebra}, journal = {Algebraic Combinatorics}, pages = {929--939}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.287}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.287/} }
TY - JOUR AU - Nakamura, Hiroaki TI - Demi-shuffle duals of Magnus polynomials in a free associative algebra JO - Algebraic Combinatorics PY - 2023 SP - 929 EP - 939 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.287/ DO - 10.5802/alco.287 LA - en ID - ALCO_2023__6_4_929_0 ER -
%0 Journal Article %A Nakamura, Hiroaki %T Demi-shuffle duals of Magnus polynomials in a free associative algebra %J Algebraic Combinatorics %D 2023 %P 929-939 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.287/ %R 10.5802/alco.287 %G en %F ALCO_2023__6_4_929_0
Nakamura, Hiroaki. Demi-shuffle duals of Magnus polynomials in a free associative algebra. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 929-939. doi : 10.5802/alco.287. https://alco.centre-mersenne.org/articles/10.5802/alco.287/
[1] Zinbiel algebras and multiple zeta values, Doc. Math., Volume 27 (2022), pp. 519-533 | DOI | MR | Zbl
[2] Zinbiel algebras and commutative algebras with divided powers, Glasg. Math. J., Volume 52 (2010) no. 2, pp. 303-313 | DOI | MR | Zbl
[3] Natural endomorphisms of shuffle algebras, Internat. J. Algebra Comput., Volume 23 (2013) no. 4, pp. 989-1009 | DOI | MR | Zbl
[4] -adic multiple zeta values. I. -adic multiple polylogarithms and the -adic KZ equation, Invent. Math., Volume 155 (2004) no. 2, pp. 253-286 | DOI | MR | Zbl
[5] Concrete mathematics, Addison-Wesley Publishing Company, Reading, MA, 1994, xiv+657 pages (A foundation for computer science)
[6] On the solutions of the universal differential equation with three regular singularities (on solutions of ), Confluentes Math., Volume 11 (2019) no. 2, pp. 25-64 | DOI | MR | Zbl
[7] Kontsevich’s integral for the Kauffman polynomial, Nagoya Math. J., Volume 142 (1996), pp. 39-65 | DOI | MR | Zbl
[8] Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., Volume 77 (1995) no. 2, pp. 189-196 | DOI | MR | Zbl
[9] Über Beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math., Volume 177 (1937), pp. 105-115 | DOI | MR | Zbl
[10] Combinatorial group theory, Dover Publications, Inc., Mineola, NY, 2004, xii+444 pages (Presentations of groups in terms of generators and relations)
[11] Maple (2021 version) https://hadoop.apache.org
[12] Shuffle algebra and polylogarithms, Discrete Math., Volume 225 (2000) no. 1-3, pp. 217-230 Formal power series and algebraic combinatorics (Toronto, ON, 1998) | DOI | MR | Zbl
[13] Some aspects of arithmetic functions in Grothendieck-Teichmüller theory, Oberwolfach Rep., Volume 18 (2021) no. 1, pp. 700-702 part of “Homotopic and geometric Galois theory. Abstracts from the workshop held March 7–13, 2021 (online meeting)”
[14] Lie elements and an algebra associated with shuffles, Ann. of Math. (2), Volume 68 (1958), pp. 210-220 | MR | Zbl
[15] Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993, xviii+269 pages (Oxford Science Publications)
[16] Sur une propriété combinatoire des demi-groupes libres, C. R. Acad. Sci. Paris, Volume 245 (1957), pp. 16-18 | Zbl
Cited by Sources: