We prove that no tree contains a set of three vertices which are pairwise strongly cospectral. This answers a question raised by Godsil and Smith in 2017.
Revised:
Accepted:
Published online:
Keywords: strongly cospectral vertices, trees, continued fractions
Coutinho, Gabriel 1; Juliano, Emanuel 1; Spier, Thomás Jung 1
CC-BY 4.0
@article{ALCO_2023__6_4_955_0,
author = {Coutinho, Gabriel and Juliano, Emanuel and Spier, Thom\'as Jung},
title = {Strong cospectrality in trees},
journal = {Algebraic Combinatorics},
pages = {955--963},
year = {2023},
publisher = {The Combinatorics Consortium},
volume = {6},
number = {4},
doi = {10.5802/alco.288},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.288/}
}
TY - JOUR AU - Coutinho, Gabriel AU - Juliano, Emanuel AU - Spier, Thomás Jung TI - Strong cospectrality in trees JO - Algebraic Combinatorics PY - 2023 SP - 955 EP - 963 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.288/ DO - 10.5802/alco.288 LA - en ID - ALCO_2023__6_4_955_0 ER -
%0 Journal Article %A Coutinho, Gabriel %A Juliano, Emanuel %A Spier, Thomás Jung %T Strong cospectrality in trees %J Algebraic Combinatorics %D 2023 %P 955-963 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.288/ %R 10.5802/alco.288 %G en %F ALCO_2023__6_4_955_0
Coutinho, Gabriel; Juliano, Emanuel; Spier, Thomás Jung. Strong cospectrality in trees. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 955-963. doi: 10.5802/alco.288
[1] Quantum walks do not like bridges, Linear Algebra Appl., Volume 652 (2022), pp. 155-172 | Zbl | MR | DOI
[2] No Laplacian Perfect State Transfer in Trees, SIAM J. Discrete Math., Volume 29 (2015), pp. 2179-2188 | Zbl | MR | DOI
[3] Algebraic combinatorics, Chapman and Hall Mathematics Series, Chapman & Hall, New York, 1993, xvi+362 pages | MR
[4] Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, 2001, xx+439 pages | MR | DOI
[5] Strongly cospectral vertices (2017) | arXiv
[6] Graphs with three mutually pseudo-similar vertices, J. Combin. Theory Ser. B, Volume 35 (1983) no. 3, pp. 240-246 | Zbl | DOI
[7] Basics of perfect communication through quantum networks, Phys. Rev. A, Volume 84 (2011)
[8] Pseudosimilar vertices in a graph, J. Graph Theory, Volume 5 (1981) no. 2, pp. 171-181 | Zbl | MR | DOI
[9] Almost all trees are cospectral, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971), Academic Press, New York (1973), pp. 275-307 | Zbl | MR
[10] A refined Gallai-Edmonds structure theorem for weighted matching polynomials, Discrete Math., Volume 346 (2023) no. 3, Paper no. 113244, 15 pages | Zbl | MR | DOI
Cited by Sources: