The quasisymmetric Macdonald polynomials were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials with the property that equals , the quasisymmetric Schur polynomial of [9]. We derive an expansion for in the fundamental basis of quasisymmetric functions.
Revised:
Accepted:
Published online:
Corteel, Sylvie 1; Mandelshtam, Olya 2; Roberts, Austin 3
@article{ALCO_2023__6_4_941_0, author = {Corteel, Sylvie and Mandelshtam, Olya and Roberts, Austin}, title = {Expanding the quasisymmetric {Macdonald} polynomials in the fundamental basis}, journal = {Algebraic Combinatorics}, pages = {941--954}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.289}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.289/} }
TY - JOUR AU - Corteel, Sylvie AU - Mandelshtam, Olya AU - Roberts, Austin TI - Expanding the quasisymmetric Macdonald polynomials in the fundamental basis JO - Algebraic Combinatorics PY - 2023 SP - 941 EP - 954 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.289/ DO - 10.5802/alco.289 LA - en ID - ALCO_2023__6_4_941_0 ER -
%0 Journal Article %A Corteel, Sylvie %A Mandelshtam, Olya %A Roberts, Austin %T Expanding the quasisymmetric Macdonald polynomials in the fundamental basis %J Algebraic Combinatorics %D 2023 %P 941-954 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.289/ %R 10.5802/alco.289 %G en %F ALCO_2023__6_4_941_0
Corteel, Sylvie; Mandelshtam, Olya; Roberts, Austin. Expanding the quasisymmetric Macdonald polynomials in the fundamental basis. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 941-954. doi : 10.5802/alco.289. https://alco.centre-mersenne.org/articles/10.5802/alco.289/
[1] Non-symmetric Macdonald polynomials and Demazure-Lusztig operators, Sém. Lothar. Combin., Volume 76 (2019) | MR
[2] Nonsymmetric Macdonald polynomials, International Mathematics Research Notices (1995) no. 10, pp. 483-515 | DOI | MR | Zbl
[3] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials, Sel. Math., Volume 28 (2022) no. 2, Paper no. 32, 33 pages | DOI | MR | Zbl
[4] From multiline queues to Macdonald polynomials via the exclusion process, Amer. J. Math., Volume 144 (2019), pp. 395-436 | DOI | MR
[5] Row-strict quasisymmetric Schur functions, characterizations of Demazure atoms, and permuted basement nonsymmetric Macdonald polynomials, 2011 (Ph.D. thesis) | arXiv | MR
[6] Multipartite -partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), Amer. Math. Soc., Providence, RI, 1984
[7] A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc, Volume 18 (2004), pp. 735-761 | DOI | MR
[8] A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., Volume 130 (2008) no. 2, pp. 359-383 | DOI | MR | Zbl
[9] Quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 463-490 | DOI | MR | Zbl
[10] A recursion and a combinatorial formula for Jack polynomials, Invent. Math. (1997), pp. 9-22 | DOI | MR | Zbl
[11] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR
[12] Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki, Volume 37 (1994–1995), pp. 189-207 | Zbl
[13] Harmonic analysis for certain representations of graded Hecke algebras, Acta Mathematica, Volume 175 (1995), pp. 75-121 | DOI | MR | Zbl
Cited by Sources: