Expanding the quasisymmetric Macdonald polynomials in the fundamental basis
Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 941-954.

The quasisymmetric Macdonald polynomials G γ (X;q,t) were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials P λ (X;q,t) with the property that G γ (X;0,0) equals QS γ (X), the quasisymmetric Schur polynomial of [9]. We derive an expansion for G γ (X;q,t) in the fundamental basis of quasisymmetric functions.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.289
Keywords: quasisymmetric Macdonald polynomials, fundamental quasisymmetric functions, tableaux, Macdonald polynomials, quasisymmetric functions

Corteel, Sylvie 1; Mandelshtam, Olya 2; Roberts, Austin 3

1 Department of Mathematics UC Berkeley USA
2 Department of Mathematics Brown University USA
3 Department of Mathematics Highline College USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_4_941_0,
     author = {Corteel, Sylvie and Mandelshtam, Olya and Roberts, Austin},
     title = {Expanding the quasisymmetric {Macdonald} polynomials in the fundamental basis},
     journal = {Algebraic Combinatorics},
     pages = {941--954},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {4},
     year = {2023},
     doi = {10.5802/alco.289},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.289/}
}
TY  - JOUR
AU  - Corteel, Sylvie
AU  - Mandelshtam, Olya
AU  - Roberts, Austin
TI  - Expanding the quasisymmetric Macdonald polynomials in the fundamental basis
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 941
EP  - 954
VL  - 6
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.289/
DO  - 10.5802/alco.289
LA  - en
ID  - ALCO_2023__6_4_941_0
ER  - 
%0 Journal Article
%A Corteel, Sylvie
%A Mandelshtam, Olya
%A Roberts, Austin
%T Expanding the quasisymmetric Macdonald polynomials in the fundamental basis
%J Algebraic Combinatorics
%D 2023
%P 941-954
%V 6
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.289/
%R 10.5802/alco.289
%G en
%F ALCO_2023__6_4_941_0
Corteel, Sylvie; Mandelshtam, Olya; Roberts, Austin. Expanding the quasisymmetric Macdonald polynomials in the fundamental basis. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 941-954. doi : 10.5802/alco.289. https://alco.centre-mersenne.org/articles/10.5802/alco.289/

[1] Alexandersson, Per Non-symmetric Macdonald polynomials and Demazure-Lusztig operators, Sém. Lothar. Combin., Volume 76 (2019) | MR

[2] Cherednik, I. Nonsymmetric Macdonald polynomials, International Mathematics Research Notices (1995) no. 10, pp. 483-515 | DOI | MR | Zbl

[3] Corteel, Sylvie; Haglund, James; Mandelshtam, Olya; Mason, Sarah; Williams, Lauren K. Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials, Sel. Math., Volume 28 (2022) no. 2, Paper no. 32, 33 pages | DOI | MR | Zbl

[4] Corteel, Sylvie; Mandelshtam, Olya; Williams, Lauren K. From multiline queues to Macdonald polynomials via the exclusion process, Amer. J. Math., Volume 144 (2019), pp. 395-436 | DOI | MR

[5] Ferreira, J. P. Row-strict quasisymmetric Schur functions, characterizations of Demazure atoms, and permuted basement nonsymmetric Macdonald polynomials, 2011 (Ph.D. thesis) | arXiv | MR

[6] Gessel, Ira M. Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), Amer. Math. Soc., Providence, RI, 1984

[7] Haglund, J.; Haiman, M.; Loehr, N. A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc, Volume 18 (2004), pp. 735-761 | DOI | MR

[8] Haglund, J.; Haiman, M.; Loehr, N. A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., Volume 130 (2008) no. 2, pp. 359-383 | DOI | MR | Zbl

[9] Haglund, J.; Luoto, K.; Mason, S.; van Willigenburg, S. Quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 463-490 | DOI | MR | Zbl

[10] Knop, F.; Sahi, S. A recursion and a combinatorial formula for Jack polynomials, Invent. Math. (1997), pp. 9-22 | DOI | MR | Zbl

[11] Macdonald, I. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR

[12] Macdonald, I. G. Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki, Volume 37 (1994–1995), pp. 189-207 | Zbl

[13] Opdam, E. M. Harmonic analysis for certain representations of graded Hecke algebras, Acta Mathematica, Volume 175 (1995), pp. 75-121 | DOI | MR | Zbl

Cited by Sources: